Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we show that the range of norm one projection on Co(X) (X is a locally compact space) which satisfies the Seever’s identity (T(fTg) = T(TfTg)) is isometrically isomorphic to Co(Y ) for some locally compact space Y.
Wydawca
Czasopismo
Rocznik
Tom
Strony
631--638
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Institut Superieur des Sciences Appliquees et de Technologie Universite du Centre Cite Taffala 4003-Sousse IBN Khaldoun, Tunisia, fatma.hadded@issatso.rnu.tn
Bibliografia
- [1] G. Birkhoff, Moyenne des fonctions born´ees, Colloq. Intern. Centre Nat. Recherche Sci. (Paris). Algebre et Theorie des Nombres, No. 24 (1949), 143-153.
- [2] B. Brainerd, On the structure of averaging operators, J. Math. Anal. App 5 (1962), 347-377.
- [3] Y. Friedman and B. Russo, Contractive projections on C0(K), Trans. Amer. Math. Soc. 273 (1982), 57-73.
- [4] F. Hadded, Contractive projections and Seever's identity in complex f-algebras, Comment. Math. Univ. Carolinae 44,2 (2003), 203-215.
- [5] C. B. Huijsmans and B. de Pagter, Averaging operators and positive contractive projections, J. Math. Anal. Appl. 113 (1986), 163-184.
- [6] J. L. Kelley, Averaging operators on C?(X), Illinois J. Math. 2 (1958), 214-223.
- [7] O. Reynolds, On the dynamic theory of incompressible viscous fluids, Phil. Trans. Roy. Soc. A 136 (1895), 123-164.
- [8] E. Scheffold, Der Bidual von F-Banach verbandsalgebren, Acta Sci. Math. 55 (1991), 167-179.
- [9] G. L. Seever, Nonnegative projections on C0(X), Pacific J.Math. 17 (1966), 159-166.
- [10] A. Triki, A note on averaging operators, Contemp. Math. 232 (1999), 345-348.
- [11] D. E. Wulbert, Some complemented functions spaces in C(X), Pacific J. Math. 24 (1968), 589-602.
- [12] D. E. Wulbert, Averaging projections, Illinois J. Math. 13 (1969), 689-693.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0035-0012