Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pseudo BCK-algebras are algebras (A,approaches 1) of type (2, 2, 0) which generalize BCK-algebras in such a way that if the operations-› and ->coincide then (A,-›, 1) is a BCK-algebra. They can be also viewed as {-›,->, 1}-subreducts of non-commutative integral residuated lattices. In the paper, we study pseudo BCK-algebras whose underlying posets are semilattices or lattices; we call them pseudo BCK-join-semilattices, pseudo BCK-meet-semilattices and pseudo BCK-lattices, respectively. After describing their congruence properties we deal mainly with prime deductive systems of pseudo BCK-join-semilattices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
495--516
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Algebra and Geometry Faculty of Science Palacky University Olomouc Tomkova 40, 779 00 Olomouc, Czech Republic, kuhr@inf.upol.cz
Bibliografia
- [1] W. J. Blok, I. M. A. Ferreirim, On the structure of hoops, Algebra Universalis 43 (2000), 233-257.
- [2] R. Ceterchi, Pseudo-Wajsberg algebras, Mult. Valued Log. 6 (2001), 67-88.
- [3] I. Chajda, G. Eigenthaler, H. Länger, Congruence Classes in Universal Algebra, Heldermann, Lemgo, 2003.
- [4] A. Dvurečenskij, S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000.
- [5] G. Georgescu, A, Iorgulescu, Pseudo-MV algebras, Mult. Valued Log. 6 (2001), 95-135.
- [6] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: An extension of BCK algebras, in: Proc. of DMTCS'01: Combinatorics, Computability and Logic, London, 2001, pp. 97-114.
- [7] G. Georgescu, L. Leuştean, V. Preoteasa, Pseudo-hoops, J. Mult.-Val. Log. Soft Comput. 11 (2005), 153-184.
- [8] P. Hájek, Observations on non-commutative fuzzy logic, Soft Comput. 8 (2003), 38-43.
- [9] R. Halaš, J. Kühr, Deductive systems and annihilators of pseudo BCK-algebras, submitted.
- [10] A. Iorgulescu, On pseudo-BCK algebras and porims, Sci. Math. Jpn. 10 (2004), 501-513.
- [11] P. Jipsen, C. Tsinakis, A survey of residuated lattices, in: Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19-56.
- [12] J. Kühr Pseudo BCK-algebras and residuated lattices, Contr. Gen. Alg. 16 (2005), 139-144.
- [13] J. Kühr, Commutative pseudo BCK-algebras, Southeast Asian Bull. Math., to appear.
- [14] J. Martinez, Archimedean lattices, Algebra Universalis 3 (1973), 247-260.
- [15] H. Ono, Y. Komori, Logics without the contradiction rule, J. Symbolic Logic 50 (1985), 169-201
- [16] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.
- [17] J. T. Snodgrass, C. Tsinakis, The finite basis theorem for relatively normal lattices, Algebra Universalis 33 (1995), 40-67.
- [18] A. Wroński, BCK-algebras do not form a variety, Math. Jap. 28 (1983), 211-213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0035-0001