PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compact and bounded sets in intuitionistic fuzzy metric spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to define q-bounded, semi-bounded, totally bounded, and unbounded sets in an intuitionistic fuzzy metric space X and study the relation between F-bounded sets and the above mentioned sets and prove that the statements (a) X is compact (b) X is sequentially compact and (c) X is complete and totally bounded are all equivalent in an intuitionistic fuzzy metric space X.
Wydawca
Rocznik
Strony
449--456
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
  • Department of Mathematics Faculty of Science and Arts Gazi University, Teknikokullar, 06500 Ankara, Turkey, hakanefe@gazi.edu.tr
Bibliografia
  • [1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 29 (2006), 1073-1078.
  • [2] Z. K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95.
  • [3] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230.
  • [4] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399.
  • [5] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90 (1997), 365-368.
  • [6] A. George and P. Veeramani, Compact and bounded sets in fuzzy metric spaces, J. Fuzzy Math. 8 (2000), 975-980.
  • [7] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988), 385-389.
  • [8] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000), 485-489.
  • [9] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 28 (2006), 902-905.
  • [10] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 225-229.
  • [11] J. L. Kelly, General Topology, Van Nostrand Reinhold Co., New York, 1955.
  • [12] O. Kramos i l and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
  • [13] R. Lowen, Fuzzy Set Theory, Kluwer Academic Pub., Dordrecht 1996.
  • [14] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (2004), 1039-1046.
  • [15] R. Saadat i, J. H. Park, On the intuitionistic topological spaces, Chaos, Solitons & Fractals 27 (2006), 331-344.
  • [16] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.
  • [17] D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildi z, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. Comp. 22 (2006), 411-424.
  • [18] D. Turkoglu, C. Alaca and C. Yildi z, Compatible maps and compatible maps of types (?) and (ß) in intuitionistic fuzzy metric spaces, Demonstratio Math. 39 (2006), 671-84.
  • [19] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0034-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.