Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We determine all the Lagrangian conditionally homogeneous mean-type mappings for which the geometric mean is invariant.
Wydawca
Czasopismo
Rocznik
Tom
Strony
289--302
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Department of Mathematics Computer Science and Econometrics University of Zielona Góra 65-512 Zielona Góra, Poland, D.Glazowska@wmie.uz.zgora.pl
Bibliografia
- [1] J. Błasińska-Lesk, D. Głazowska, J. Matkowski, An invariance of the geometric mean with respect to Stolarsky mean-type mappings, Result. Math. 43 (2003), 42-55.
- [2] J. M. Borwein, P. B. Borwein, Pi and the AGM - A study in Analytic Number Theory and Computational Complexity, A Wiley - Interscience Publication, John Wiley &; Sons, New York - Chichester - Brisbane - Toronto - Singapore (1987).
- [3] P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and Their Inequalities, Mathematics and its Applications, D. Reidel Publishing Company, Dordrecht-Boston-Lancaster-Tokyo (1988).
- [4] J. Jarczyk, J. Matkowski, Invariance in the class of weighted quasi-arithmetic means, Ann. Polon. Math. 88 (2006), 39-51.
- [5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN (1985).
- [6] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Sil. 13 (1999), 211-226.
- [7] J. Matkowski, Mean value property and associated functional equations, Aequationes Math. 58 (1999), 46-59.
- [8] J. Matkowski, Lagrangian mean-type mappings for which the arithmetic mean is invariant, J. Math. Anal. Appl. 309 (2005), 15-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0034-0004