Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concept of a ambda-lattice generalizes a lattice by substituting associativity by the so-called skew associativity. When a bounded ambda-lattice is equipped with a monotonous unary involution which is a complementation, it is called a ambda-ortholattice. For ambda-ortholattices a Sheffer operation is constructed and, moreover, a derived algebra analogous to an MV-algebra is assigned whenever the ambda-lattice has antitone involutions on sections.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
261--270
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
autor
autor
- Department of Algebra and Geometry Palacky University Olomouc Tomkova 40 779 00 Olomouc, Czech Republic, chajda@inf.upol.cz
Bibliografia
- [1] G. Birkhoff, Lattice Theory, (3rd edition), Colloq. Publ. 25, Proc. Amer. Math. Soc., Providence, R. I., 1967.
- [2] I. Chajda, Sheffer operation in ortholattices, Acta Univ. Palack. Olomuc., Fac. Rerum. Natur. Math. 44 (2005), 19-23.
- [3] I. Chajda, H. Länger, Modifications of MV-algebras corresponding to strong ortholattices, Demonstratio Math. 38 (2005), 1-6.
- [4] J. Ježek, R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49-69.
- [5] H. M. Sheffer, A set of five independent postulates for Boolean algebras, Trans. Amer. Math. Soc. 14 (1913), 481-488.
- [6] V. Snášel, ?-lattices, Math. Bohemica 122 (1997), 267-272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0034-0002