PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Erdos' theorem for monotonic subsequences

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper finite one-one sequences of reals are studied. We consider the strengthening of famous Erdös'theorem. We discuss the lengths of the largest decreasing and increasing subsequences of the given sequences. Also, we study the length of the largest monotonic subsequences, which the first or the last elment is equal to a given elment ai of the sequence a. What is particulary important is the connection betwen estimation of these values with the problem of the existence of the3-elements monotonic subsequences of a having the form{ak, ak+1, ak+2}. Moreover, we introduce some conditons which are sufficient to the existence of such 3-elments subsequences of sequence a. As a new example of the application of Erdös' theorem for monotonic subsequences we give a combinatoric characterization of divergent permutations.
Wydawca
Rocznik
Strony
229--259
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
autor
  • Institute of Mathematics Silesian University of Technology Kaszubska 23 44-100 Gliwice, Poland, d.slota@polsl.pl
Bibliografia
  • [1] M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer, New York, 2001.
  • [2] P. Erdös, G. Szekeres, A combinatorial problem in geometry, Compositio Math. (1935), 463-470.
  • [3] F. W. Levi, Rearrangement of convergent series, Duke Math. J. 13 (1946), 579-585.
  • [4] B. S. Steczkin, On monotonie subseąuences in permutations of the set {l, 2,..., n}, Mat. Zametki 13 (1973), 511-514 (in Russian).
  • [5] R. Wituła, The Riemann theorem and divergent permutations, Colloą. Math. 69 (1995), 275-287.
  • [6] R. Wituła, Convergence-preserving functions, Nieuw Arch. Wisk. 13 (1995), 31-35.
  • [7] R. Wituła, On the set of limit points of partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl., to appear.
  • [8] R. Wituła, M. J. Przybyła, The strongly and weakly divergent permutations, Demonstratio Math. 39 (2006), 107-116.
  • [9] R. Wituła, D. Słota, The convergence classes o f divergent permutations, to appear.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0034-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.