PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efekty dynamiczne w układach ciecz-gaz z aktywną powierzchnią międzyfazową

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Przedmiotem pracy jest analiza zjawisk dynamicznych, przebiegających przy powierzchni ciecz-gaz w obecności związków powierzchniowo czynnych. Szczególną uwagę zwrócono na efekty hydrodynamiczne wywoływane przez zaburzenie rozkładu napięcia powierzchniowego, będące skutkiem mechanicznego naruszenia równowagi. Przy wykorzystaniu wyników własnych badań, rozważano: (i) zagadnienia kinetyki adsorpcji surfaktantu i obniżania napięcia powierzchniowego w układach o zmiennej hydrodynamice, (ii) reakcję obszaru powierzchniowego na zaburzenia mechaniczne różnego typu (problem reologii powierzchniowej), (iii) powstawanie efektów Marangoniego w układach z odkształcaną powierzchnią oraz ich wpływ na ruch masy i trwałość pian. Przedyskutowano występowanie i znaczenie dynamicznych efektów powierzchniowych w układach ciecz-gaz stosowanych przemysłowo. Wiele miejsca poświęcono także rozważaniom procesów dynamicznych biegnących w układzie surfaktantu płucnego, który uznano za szczególnie dogodny obiekt do modelowej analizy. Wynika to ze specyfiki tego układu, w którym związki o wysokiej aktywności powierzchniowej są zawarte w cienkiej warstwie cieczy, kontaktującej się z fazą gazową i podlegającej cyklicznym deformacjom w rytm oddychania. Dominującą rolę dynamicznych efektów powierzchniowych w takim układzie wykazano w badaniach doświadczalnych z wykorzystaniem wagi Langmuira i tensjometrii pęcherzykowej oraz przy zastosowaniu modelowania teoretycznego. W rozważanym układzie analizowano efekty hydrodynamiczne, wynikające z gradientów napięcia powierzchniowego, i ich wpływ na ruch masy. Potwierdzono znaczącą rolę efektów Marangoniego w procesach transportowych przebiegających w płucach. Rozważano również problem wykorzystania wyników tensjometrii dynamicznej do oceny właściwości surfaktantu płucnego, decydujących o wypełnianych przezeń funkcjach fizjologicznych. Wskazano na możliwość zaburzenia tych funkcji przez wybrane gazy i aerozole, tworzące zanieczyszczenie powietrza lub zawarte w lekach podawanych drogą inhalacyjną. Wykazano, że zaburzenie to odbywa się na skutek zmian w przebiegu dynamicznych procesów powierzchniowych w układzie surfaktantu płucnego, wywołanych przez efekty natury fizykochemicznej. Postawiono i udowodniono, w pomiarach m vitro, hipotezę dotyczącą mechanizmów oddziaływania wdychanych cząstek i gazów z substancjami powierzchniowo czynnymi obecnymi w płucach, formułując wnioski znajdujące zastosowanie w toksykologii i medycynie. W pracy zaakcentowano znaczenie wykorzystania metod badawczych oraz pojęć z zakresu inżynierii chemicznej i procesowej w rozwiązywaniu problemów fizjologii, wskazując na możliwości, a jednocześnie potrzebę ekspansji nauk technicznych na nowe obszary tematyczne.
EN
This work focuses on the dynamic phenomena at the gas-liquid interface, in the presence of surfactants. Special attention is paid to hydrodynamic effects, induced by the disturbance of the surface tension distribution, as a result of a mechanical departure from the equlibrium. Several problems were analyzed, based on the results of the author's studies: (i) the kinetics of surfac-tant adsorption and surface tension reduction in systems with variable hydrodynamics; (ii) the reaction of the interfacial region to a mechanical disturbance of various kinds (the problem of surface rheology); (iii) the generation of the Marangoni effects in systems with a deformable interface, and their influence on mass transfer and foam stability. The occurrence and significance of dynamic interfacial effects in technologically-relevant gas-liquid systems were discussed. Extensive studies were carried out on the lung surfactant system, which was regarded as a very convenient object for the analysis of the discussed effects. This arises from the extraordinary structure of the system, where highly active surfactants are present in the thin liquid layer that undergoes periodic deformation according to the breathing cycle. The predominant role of the interfacial dynamic effects was demonstrated both through the use of experiments, employing the Langmuir balance and bubble tensiometry, and theoretically, by modeling. The hydrodynamic effects resulting from the surface tension gradients, and their influence on the mass transfer, were analyzed. The significance of the Marangoni effects on transport processes in the lungs was also confirmed. The possibility of using methods of dynamic surface tensiometry in evaluating lung surfactant properties, in respect to physiological functions, was also investigated. It was demonstrated that these functions might be impaired by selected aerosols and gases present in the inhaled air (e.g., contaminants or drugs for inhalation), and that it results from alterations in surface activity caused by physico-chemical effects. The hypothesis of interaction mechanisms between inhaled particles and surfactants in the lungs was formulated and documented during in vitro experiments, which may have important consequences for medicine and toxicology. The work emphasizes the significance of the concepts and methods employed in chemical engineering in the solution of physiological problems. This indicates the possibility and need for the expansion of chemical and process engineering within new scientific areas.
Rocznik
Strony
3--141
Opis fizyczny
Bibliogr. 347 poz., tab., rys., wykr.
Twórcy
autor
  • Zakład Procesów Podstawowych i Ochrony Środowiska, Wydział Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej www.ichip.pw.edu.pl/sosnowski, sosnowsk@ichip.pw.edu.pl
Bibliografia
  • [1.1] Aiba S., Humphrey A.E., Millis N.F. 1977. Inżynieria biochemiczna. WNT, Warszawa.
  • [1.2] Bioprocess Engineering. Systems, equipment and facilities (B.K. Lydersen, N.A. D'elia, K.L. Nelson Eds.). 1994, John Wiley & Sons, New York.
  • [1.3] He L., Dexter A.F., Middelberg A.P.J. 2006. Biomolecular engineering at interfaces. Chem. Eng. Sci. 61, 989-1003.
  • [1.4] Cooney D.O. 1976. Biomedical engineering principles. An introduction to fluid, heat, and mass transport processes. Marcel Dekker, New York-Basel.
  • [1.5] Gradoń L. 2001. Rola inżynierii chemicznej i procesowej w rozwiązywaniu wybranych problemów fizjologii. Inż. Chem. Procesowa, 22(3A), 49-53.
  • [1.6] Feng S.-S., Chien S. 2003. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58, 4087-4114.
  • [1.7] Gradoń L., Sosnowski T.R., Moskal A. 2003. Resuspension of powders and deposition of aerosol particles in the upper human airways, in: Optimization of aerosol drug delivery (L. Gradoń, J. Marijnissen Eds.), Kluwer, Dordrecht, 123-137.
  • [1.8] Sosnowski T.R. 2003. Dynamic surface tension as an indicator of lung function in health and disease. Biocyb. Biomed. Eng. 23, 89-98.
  • [2.1] Adam N.K. 1941. The physics and chemistry of surfaces. Oxford University Press, London.
  • [2.2] Levich V.G. 1962. Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs.
  • [2.3] Adamson W.A. 1963. Chemia fizyczna powierzchni. PWN, Warszawa.
  • [2.4] Scheludko A. 1969. Chemia koloidów. WNT, Warszawa.
  • [2.5] Sonntag H. 1982. Koloidy. PWN, Warszawa.
  • [2.6] Lord Rayleigh. 1916. On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. & J. of Science S.6, 32 (192), 529-546.
  • [2.7] Pearson J.R.A. 1958. On convection induced by surface tension. J. Fluid. Mech. 4, 489-500.
  • [2.8] Lyklema J. 2000. Fundamentals of interface and colloid science. Academic Press, London-San Diego.
  • [2.9] Gibbs J.W. 1876. On the equilibrium of heteregeneous substances. Trans. Connect. Acad. 3, 108-248.
  • [2.10] Guggenheim E.A. 1967. Thermodynamics. North-Holland Publishing Company, Amsterdam.
  • [2.11] Sosnowski T.R. 1997. Zjawiska powierzchniowe i hydrodynamiczne w układzie surfaktantu płucnego. Rozprawa doktorska, WIChiP PW, Warszawa.
  • [2.12] Kralchevsky P.A., Nagayama K. 2001. Particles and fluid interfaces and membranes, Elsevier, Amsterdam.
  • [2.13] Kralchevsky P.A., Danov K.D., Denkov N.D. 2000. Chemical physics of colloidal systems and interfaces, in: Handbook of surface and colloid chemistry (K.S. Birdi Ed.), CRC Press, New York, 137-344.
  • [2.14] Dutkiewicz E.T. 1998. Fizykochemia powierzchni. WNT, Warszawa.
  • [2.15] Chang C.H., Franses E.I. 1995. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Coll. Surfaces A. 100, 1-45.
  • [2.16] Kralchevsky P.A., Radkov Y.S., Denkov N.D. 1993. Adsorption from surfactant solutions under diffusion control. J. Coll. Interface Sci. 161, 361-365.
  • [2.17] Fainerman V.B., Zholob S.A., Miller R., Joos P. 1998. Non-diffusional adsorption dynamics of surfactants at the air/water interface: adsorption barrier or non-equilibrium surface layer. Coll. Surfaces A, 143, 243-249.
  • [2.18] Adamczyk Z., Para G., Warszyński P. 1999. Influence of ionic strength on surface tension of cetyltrimethylammonium bromide. Langmuir, 15, 8383-8387.
  • [2.19] Pomianowski A. 2005. Open systems, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), EDU-SA, Wrocław, 53-58.
  • [2.20] Bendure R.L. 1971. Dynamic surface tension determination with the maximum bubble pressure method. J. Coll. Interface Sci. 35, 239-248.
  • [2.21] Fainerman V.B., Miller R. 1998. The maximum bubble pressure tensiometry, in: Drops and bubbles in interfacial research (D. Möbius, R. Miller Eds.), Elsevier, Amsterdam, 280-321.
  • [2.22] Manglik R.M., Wasekar V.M., Zhang J. 2001. Dynamic and equilibrium surface tension of aqueous and polymeric solutions. Exp. Thermal Fluid Sci. 25, 55-64.
  • [2.23] Pugh R.J. 2001. Dynamic surface tension measurements in mineral flotation and deinking flotation systems and the development of the on line dynamic surface tension detector (DSTD). Minerals Eng. 14, 1019-1031.
  • [2.24] Sosnowski T.R. 2000. Ocena dynamiki sorpcji tensydów z roztworów wodnych w zastosowaniu do procesów ochrony środowiska. Materiały IV Ogólnopolskiej Konferencji Naukowej "Inżynieria procesowa w ochronie środowiska", Jachranka, 21-22.09.2000, 130-135.
  • [2.25] Frese C., Ruppart S., Sugar M., Schmidt-Lewerkuhne H., Witten K.P., Fainerman V.B., Eggers R., Miller R. 2003. Adsorption kinetics of surfactant mixtures from micellar solutions as studied by maximum bubble pressure technique. J. Coll. Interface Sci. 267, 475-482.
  • [2.26] Alakoç U., Megaridis C.M., McNallan M., Wallace D.B. 2004. Dynamic surface tension measurements with submillisecond resolution using a capillary-jet instability technique. J. Coll. Interface Sci. 276, 379-391.
  • [2.27] MacLeod C.A., Radke C.J. 1994. Surfactant exchange kinetics at the air/water interface from the dynamic tension of growing liquid drops, J. Coll. Inerface. Sci. 166, 73-88.
  • [2.28] van den Bogaert R., Joos P. 1979. Dynamic surface tension of sodium myristate solutions. J. Phys. Chem. 83, 2244-2248.
  • [2.29] Mollet C., Touhami Y., Hornof V. 1996. A comparative study of the effect of ready-made and in situ-formed surfactants on interfacial tension measured by drop volume tensiometry. J. Coll. Interface. Sci. 178, 523-530.
  • [2.30] Campanelli J.R., Wang X. 1997. Effect of neck formation on the measurement of dynamic interfacial tension in a drop volume tensiometer. J. Coll. Interface. Sci. 190, 491-496.
  • [2.31] Lin S.Y., McKeigue K. & Maldarelli C. 1990. Diffusion controlled surfactant adsorption studied by pendant drop digitization. AIChE J. 36, 1785-1795.
  • [2.32] Horozov T., Arnaudov L. 1999. A novel fast technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial area. J. Coll. Interface. Sci. 219, 99-109.
  • [2.33] Chen P. 2001. Understanding the dynamic surface tension of solutions containing volatile organic compounds (VOCs). Coll. Surfaces A. 192, 195-204.
  • [2.34] Boyle J., Mautone A.J. 1982. A new surface balace for dynamic surface tension studies. Coll. Surfaces 4, 77-85.
  • [2.35] Sosnowski T.R., Gradoń L. 1993. Wpływ ozonu zawartego w powietrzu na własności oddechowe. Badania in vitro. Post. Aerozoloter. 1, 77-92.
  • [2.36] Pawelec M.K., Sosnowski T.R. 2003. Langmuir-Wilhelmy balance studies of DPPC and CTAB films, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), OWPWr., Wrocław, 267-270.
  • [2.37] Enhörning G. 1977. Pulsating bubble technique for evaluating pulmonary surfactant. J. Appl. Physiol. 43, 198-203.
  • [2.38] Chang C.H., Franses E.I. 1994. Dynamic surface tension behavior of aqueous octanol solutions under constant-area and pulsating-area conditions. Chem. Eng. Sci. 49, 313-325.
  • [2.39] Lunkenheimer K., Winsel K., Fruhner H., Fang J., Wantke K.-D., Siegler K. 1996. Dynamic surface tension and surface elasticity of adsorbed pulmonary surfactant layers. Coll. Surfaces A. 114, 199-210.
  • [2.40] Sosnowski T.R. 2000. How to evaluate the pulmonary surfactant quality with the oscillating bubble technique. Prace WIChiP PW 26, 97-114.
  • [2.41] Herold R., Dewitz R., Schürch S., Pison U. 1998. Pulmonary surfactant and biophysical function, in: Drops and bubbles in interfacial research (D. Möbius, R. Miller Eds.), Elsevier, Amsterdam, 433-474.
  • [2.42] Eastoe J., Dalton J.S. 2000. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Coll. Interface Sci. 85, 103-144.
  • [2.43] Borwankar R.P., Wasan D.T. 1988. Equilibrium and dynamics of adsorption of surfactants at fluid-fluid interfaces. Chem. Eng. Sci. 43, 1323-1337.
  • [2.44] Sosnowski T.R. 2001. Dynamika sorpcji surfaktantów na powierzchni międzyfazowej ciecz-gaz. Inż. Chem. Proces. 22 (3E), 1297-1302.
  • [2.45] Lunkenheimer K., Miller R. 1987. A criterion for judging the purity of adsorbed surfactant layers. J. Coll. Interface Sci. 120, 176-183.
  • [2.46] Lunkenheimer K., Theil F., Lerche K.H. 1992. Investigations on the hydrolysis of sodium n-alkyl sulfates in aluminium oxide suspensions. Langmuir 8, 403-408.
  • [2.47] Lunkenheimer K., Pergande H.-J., Krüger H. 1987. Apparatus for programmed high-performance purification of surfactant solutions. Rev. Sci. Instrum. 58, 2313-2316.
  • [2.48] Borwankar R.P., Wasan D.T. 1983. The kinetics of adsorption of surface active agents at gas-liquid surfaces. Chem. Eng. Sci. 38, 1637-1649.
  • [2.49] Miller R., Fainerman V.B, Makievski A.V., Kragel J., Grigoriev D.O., Kazakov V.N., Sinyachenko O.V. 2000. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interfaces. Adv. Coll. Interface Sci. 86, 39-82.
  • [2.50] Ravera F., Liggieri L., Steinchen A. 1993. Sorption kinetics considered as a renormalised diffusion process. J. Coll. Interface Sci. 156, 109-116.
  • [2.51] Ferri J.K., Stebe K.J. 1999. Which surfactant reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Coll. Interface Sci. 85, 61-97.
  • [2.52] Sosnowski T.R. 2000. Time-dependent phenomena in surfactant solutions. 14th Int. Congress of Chemical and Process Engineering CHISA 2000, Prague, Czech Republic, 27-31.08.2000. Summaries Vol. 2, 325.
  • [2.53] Ward A.F.H., Tordai L. 1946. Time-dependence of boundary tensions of solutions. I. The role of diffusion in time-effects. J. Chem. Phys. 14, 453-461.
  • [2.54] Fainerman V.B., Miller R. 1995. Dynamic surface tensions of surfactant mixtures at the water-air interface. Coll. Surfaces A. 97, 65-82.
  • [2.55] Johannsen E.C., Chung J.B., Chang C.H., Franses E.I. 1991. Lipid transport to air/water interfaces. Coll. Surfaces 53, 117-134.
  • [2.56] Hansen R.S. 1960. The theory of diffusion-controlled adsorption with evaporation. J. Phys. Chem. 64, 637-641.
  • [2.57] Borwankar R.P., Wasan D.T. 1986. The kinetics of adsorption of ionic surfactants at gas-liquid surfaces. Chem. Eng. Sci. 41, 199-201.
  • [2.58] Hua X.Y., Rosen J. 1991. Dynamic surface tension of aqueous surfactant solutions. J. Coll. Interface Sci. 141, 180-189.
  • [2.59] Filippov L.K. 1994. Dynamic surface tension of aqueous surfactant solutions. 1. Diffusion-convective controlled adsorption. J. Coll. Interface Sci. 163, 49-60.
  • [2.60] Filippov L.K. 1994. Dynamic surface tension of aqueous surfactant solutions. 2. Diffusion-kinetic-convective controlled adsorption. J. Coll. Interface Sci. 164, 471-482.
  • [2.61] Filippov L.K. 1996. On the theory of dynamic surface tension of ionic surfactant solutions. I. Diffusion-convective adsorption. J. Coll. Interface Sci. 182, 330-347.
  • [2.62] Filippov L.K., Fillipova N.L. 1996. Overshoots of adsorption kinetics. J. Coll. Interface Sci. 178, 571-580.
  • [2.63] Daniel R., Berg J.C. 2001. Diffusion-controlled adsorption at the liquid-air interface: the long-time limit. J. Coll. Interface Sci. 237, 294-296.
  • [2.64] Sosnowski T.R. 2003. Wpływ własności mechanicznych powierzchni ciecz-gaz na szybkość ociekania piany. Inż. Aparat. Chem. 42(4s), 82-83.
  • [2.65] Miller R., Joos P., Fainerman V.B. 1994. Dynamic surface tension of surfactant and polymer solutions. Adv. Coll. Interface Sci. 49, 249-302.
  • [2.66] Łyczek M. 2004. Dynamika układów ciecz-gaz. Praca magisterska, WIChiP PW, Warszawa.
  • [2.67] Sosnowski T.R., Pawelec M.K. 2005. Dynamic response of the gas-liquid interface to deformation, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), EDU-SA, Wrocław, 139-143.
  • [2.68] Sosnowski T.R. 2003. Analiza reologiczna procesów dynamicznych na powierzchni międzyfazowej ciecz-gaz. I. Część teoretyczna. Inż. Chem. Procesowa 24, 93-101.
  • [2.69] Wilczyński K. 2001. Reologia w przetwórstwie tworzyw sztucznych. WNT, Warszawa.
  • [2.70] Slattery J.C. 1990. Interfacial transport phenomena. Chem. Eng. Commun. 4, 149-166.
  • [2.71] Danov K.D. 2004. Effect of surfactants on drop stability and thin film drainage, in: Fluid mechanics of surfactant and polymer solutions (V.M. Starov, I.B. Ivanov Eds.) Springer, New York, 1-38.
  • [2.72] Joly M. 1972. Rheological properties of monomolecular films. Part I.: Basic concepts and experimental methods. In: Surface and colloid science. Vol. 5 (E. Matijević Ed.), Wiley-Interscience, New York, 2-193.
  • [2.73] Danov K.D., Kralchevsky P.A., Ivanov I.B. 1999. Equilibrium and dynamics of surfactant adsorption monolayers and thin liquid films, in: Handbook of detergents, Part A: Properties (G. Broze Ed.), Marcel Dekker, New York, 303-418.
  • [2.74] van den Tempel M. 1977. Surface rheology. J. Non-newtonian Fluid Mech. 2, 205-219.
  • [2.75] Gaines G.L. Jr. 1966. Insoluble monolayers at liquid-gas interfaces. Interscience Publishers, New York.
  • [2.76] Krägel J., Kretzschmar G., Li J.B., Loglio G., Miller R., Möhwald H. 1996. Surface rheology of monolayers. Thin Solid Films 284-285, 361-364.
  • [2.77] Petkov J.T., Gurkov T.D. 2000. Dilatational and shear elasticity of gel-like protein layers on air/water interface. Langmuir 16, 3703-3711.
  • [2.78] Cicuta P., Terentjev E.M. 2005. Viscoelasticity of a protein monolayer from anisotropic surface pressure measurements. Eur. Phys. J. E. 16, 147-158.
  • [2.79] Miller R., Wüstneck R., Krägel J., Kretzchmar G. 1996. Dilational and shear rheology of adsorption layers at liquid interfaces. Coll. Surf. A. 111, 75-118.
  • [2.80] Scriven L.E. 1960. Dynamics of a fluid interface. Chem. Eng. Sci. 12, 98-108.
  • [2.81] Podgórski A. 1991. Modelowanie procesów oczyszczania w układzie oddechowym człowieka. Praca doktorska, WIChiP PW, Warszawa.
  • [2.82] Lopez J.M., Hirsa A.H. 2000. Surfactant-influenced gas-liquid interfaces: nonlinear equation of state and finite surface visosities. J. Coll. Interface Sci. 229, 575-583.
  • [2.83] Erni P., Fischer P., Heyer P., Windhab E.J., Kusnezov V., Läuger J. 2004. Rheology of gas/liquid and liquid/liquid interfaces with aqueous and biopolymer subphases. Progr. Colloid Polym. Sci. 129, 16-23.
  • [2.84] Wantke K.D., Fruhner H. 2001. Determination of surface dilational viscosity using the oscillating bubble method. J. Coll. Interface Sci. 237, 185-199.
  • [2.85] van Voorst Vader F., Erkens T.F., van den Tempel M. 1964. Measurement of dilatational surface properties. Trans. Faraday Soc. 60, 1170-1177.
  • [2.86] Sosnowski T.R., Mierzejewski T. 2001. Badanie własności reologicznych powierzchni międzyfazowej ciecz-gaz przy użyciu tensjometru z pulsującym pęcherzem. Inż. Chem. Procesowa 22 (3E), 1303-1308.
  • [2.87] Sosnowski T.R. 2003. Analiza reologiczna procesów dynamicznych na powierzchni międzyfazowej ciecz-gaz. II. Część doświadczalna. Inż. Chem. Procesowa 24, 103-112.
  • [2.88] Fergusson J., Kembłowski Z. 1995. Reologia stosowana płynów. Marcus, Łódź.
  • [2.89] Lucassen J., van den Tempel M. 1972. Dynamic measurements of dilational properties of a liquid interface. Chem. Eng. Sci. 27, 1283-1291.
  • [2.90] Benjamins J., Cagna A., Lucassen-Reynders E.H. 1996. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Coll. Surf. A. 114, 245-254.
  • [2.91] Sosnowski T.R., Pawelec M.K. 2003. Mechanical properties of a gas-liquid interface in the presence of surfactants, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), OWPWr., Wrocław, 233-236.
  • [2.92] Pawelec M.K., Sosnowski T.R. 2003. Relaxation phenomena at the air-water interface with surfactants. Int. J. Appl. Mech. Eng. 8, 295-300.
  • [2.93] Sosnowski T.R., Pawelec M.K., Gradoń L. 2006. Wpływ deformacji na własności dynamiczne powierzchni ciecz-gaz w obecności surfaktantów Inż. Chem. Procesowa 27, 93-106.
  • [2.94] Boonman A., Machiels F.H.J., Snik A.F.M., Egberts J. 1987. Squeeze-out from mixed monolayers of dipalmitoylphosphatidylcholine and egg phosphatidylglycerol. J. Coll. Interface Sci. 120, 456-468
  • [2.95] Nieman G.F., Bredenberg C.E. 1985. High surface tension pulmonary edema induced by detergent aerosol. J. Appl. Physiol. 58, 129-136.
  • [2.96] Wang C.Z., Barrow R.E, Cox C.S. Jr, Yang S.F., Herndon D.N. 1993. Influence of detergent aerosol on lung microvascular permeability. J. Appl. Physiol. 74, 1016-1023.
  • [2.97] Pawelec M.K., Sosnowski T.R., Matyja O. 2004. Wyznaczanie lepkości i sprężystości dylatacyjnej monowarstwy surfaktantu na powierzchni cieczy w wadze Langmuira-Wilhelmy'ego. Inż. Chem. Procesowa 25, 1449-1454.
  • [3.1] Levich V.G. 1962. Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs.
  • [3.2] Zhang Y., McLaughlin J.B., Finch J.A. 2001. Bubble velocity and model of surfactant mass transfer to bubble surface. Chem. Eng. Sci. 56, 6605-6616.
  • [3.3] Liao Y., McLaughlin J.B. 2000. Dissolution of freely raising bubble in aqueous surfactant solutions. Chem. Eng. Sci. 55, 5831-5850.
  • [3.4] Krzan M., Lunkenheimer K., Małysa K. 2003. Pulsation and bouncing of a bubble prior to rupture and/or foam film formation. Langmuir 19, 6586-6589.
  • [3.5] Małysa K., Krasowska M., Krzan M. 2005. Influence of surface active substances on bubble motion and collision with various interfaces. Adv. Coll. Interface Sci. 114-115, 205-225.
  • [3.6] Warszyński P., Jachimska B., Małysa K. 1996. Experimental evidence of the existence of non-equilibrium coverages over the surface of the floating bubble. Coll. Surf. A. 108, 321-325.
  • [3.7] Jachimska B., Warszyński P., Małysa K. 2000. Effects of motion in n-hexanol solution on the lifetime of bubbles at the solution surface. Progr. Colloid Polym. Sci. 116, 120-128.
  • [3.8] Sosnowski T.R., Pawelec M.K. 2003. Badania własności mechanicznych powierzchni międzyfazowej ciecz-gaz w obecności surfaktantów. Inż. Aparat. Chem. 42 (5s), 187-189.
  • [3.9] Lin C.-Y., Slattery J.C. 1982. Thinning of a liquid film as a small drop or bubble approaches a solid plane. AIChE J. 23, 147-156.
  • [3.10] Ivanov I.B., Dimitrov D.S., Somasundaran P., Jain R.K. 1985. Thinning of films with deformable surfaces: diffusion-controlled surfactant transfer. Chem. Eng. Sci. 40, 137-150.
  • [3.11] Pugh R.J. 1996. Foaming, foam films, antifoaming and defoaming. Adv. Coll. Interface Sci. 64, 67-142.
  • [3.12] Hudson S.D., Jamieson A.M., Burkhart B.E. 2003. The effect of surfactant on the efficiency of shear-induced drop coalescence. J. Coll. Interface Sci. 265, 409-421.
  • [3.13] Danov K.D. 2004. Effect of surfactants on drop stability and thin film drainage, in: Fluid Mechanics of Surfactant and Polymer Solutions (V.M. Starov and I.B. Ivanov Eds.), Springer, New York, 1-38.
  • [3.14] Keen G.S., Blake J.R. 1996. A note on the formation and rise of a bubble from a submerged nozzle, including effect of bulk- and surface-dilational viscosity. J. Coll. Interface Sci. 180, 625-628.
  • [3.15] Dey D., Boulton-Stone J.M., Emery A.N., Blake J.R. 1997. Experimental comparisons with a numerical model of surfactant effects on the burst of a single bubble. Chem. Eng. Sci. 52, 2769-2783
  • [3.16] Dey D., Emery A.N. 1999. Problems in predicting cell damage from bubble bursting. Biotechnol. Bioeng. 65 240-245.
  • [3.17] Clift R., Grace J.R., Weber M.E. 1978. Bubbles, drops, and particles. Academic Press, London.
  • [3.18] Gaines G.L. Jr. 1966. Insoluble monolayers at liquid-gas interfaces. Interscience Publishers, New York.
  • [3.19] Blank M., Roughton F.J.W. 1960. The permeability of monolayers to carbon dioxide. Trans. Faraday Soc. 56, 1832-1841.
  • [3.20] Koide K., Hayashi T., Sumino K., Iwamoto S. 1976. Mass transfer from single bubbles in aqueous solutions of surfactants. Chem. Eng. Sci. 31, 963-967.
  • [3.21] Wagner M., Pöpel H.J. 1996. Surface active agents and their influence on oxygen transfer. Wat. Sci. Technol. 34, 249-256.
  • [3.22] Vázquez G., Cancela M.A., Riverol C., Alvarez E., Navaza J.M. 2000. Application of the Danckwerts method in a bubble column. Effects of surfactants on mass transfer coefficient and interfacial area. Chem. Eng. J. 78, 13-19.
  • [3.23] Hofmeier U., Yaminsky V.V., Christenson H.K. 1995. Observations of solute effects on bubble formation. J. Coll. Interface Sci. 174, 199-210.
  • [3.24] Jamialahmadi M., Müller-Steinhagen H. 1992. Effect of alcohol, organic acid and potassium chloride concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns. Chem. Eng. J. 50, 47-56.
  • [3.25] Pohorecki R., Moniuk W., Bielski P., Zdrójkowski A. 2001. Modelling of the coalescence/redispersion processes in bubble columns. Chem. Eng. Sci. 56, 6157-6164.
  • [3.26] Eckenfelder W.W. Jr, Barnhart E.L. 1961. The effect of organic substances on the transfer of oxygen from air bubbles in water. AIChE J. 7 631-634.
  • [3.27] Yagi H., Yoshida F. 1974. Oxygen absorption in fermenters - effect of surfactants, antifoaming agents, and sterilized cells. J. Ferment. Technol. 52, 905-916.
  • [3.28] Masutani G.K., Stenstrom M.K. 1991. Dynamic surface tension effects on oxygen transfer. J. Environ. Eng. 117, 126-142.
  • [3.29] Vázquez G., Cancela M.A., Varela R., Alvarez E., Navaza J.M. 1997. Influence of surfactants on absorption of CO2 in a stirred tank with and without bubbling. Chem. Eng. J. 67, 131-137.
  • [3.30] Vasconcelos J.M.T., Rodrigues J.M.L., Orvalho S.C.P., Alves S.S., Mendes R.L., Reis A. 2003. Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors. Chem. Eng. Sci. 58, 1431-1440.
  • [3.31] Montes F.J., Galan M.A., Cerro R.L. 1999. Mass transfer from oscillating bubbles in bioreactors. Chem. Eng. Sci. 54, 3127-3136
  • [3.32] Molenkamp T. 1998. Marangoni convection, mass transfer and microgravity. Ph.D. Thesis University of Groningen, The Netherlands.
  • [3.33] Vázquez-Una G., Chenlo-Romero, F., Sanchez-Barral M., Perez-Munuzuri V. 2000. Mass transfer enhancement due to wave formation at a horizontal gas-liquid interface. Chem. Eng. Sci. 55, 5851-5856.
  • [3.34] Sisoev G., Matar O.K., Lawrence C.J. 2005. Gas absorption into a wavy film flowing over a spinning disc. Chem. Eng. Sci. 60, 2051-2060.
  • [3.35] Chen Z.D., Chen X.D., Chen J.J.J. 1997. Effects of an oscillating interface on heat transfer. Chem. Eng. Sci. 52, 3265-3275.
  • [3.36] Liu X., Duncan J.H. 2003. The effects of surfactants on spilling breaking waves. Nature 421, 520-523.
  • [3.37] Probstein P.F. 1994. Physicochemical hydrodynamics. J. Wiley & Sons, New York.
  • [3.38] Nepomnyashchy A.A., Velarde M.G., Colinet P. 2002. Interfacial phenomena and convection. Chapman & Hall/CRC, Boca Raton.
  • [3.39] Gradoń L., Białecki J., Hołyst J., Sosnowski T.R. 2000. Rola surfaktantu w transporcie masy przez powierzchnię międzyfazową ciecz-gaz. Inż. Chem. Procesowa 21, 163-181.
  • [3.40] Wassmuth F., Laidlaw W.G., Coombie D.A. 1990. Interfacial instabilities: the Linde instability. Chem. Eng. Sci. 45, 3483-3490.
  • [3.41] Vázquez G., Antorrena G., Navaza J.M., Santos V. 1996. Absorption of CO2 by water and surfactant solutions in the presence of induced Marangoni effect. Chem. Eng. Sci. 51, 3317-3324.
  • [3.42] Lu H-H., Yang Y-M., Maa J.-R. 1996. Effect of artificially provoked Marangoni convection at a gas/liquid interface on absorption. Ind. Eng. Chem. Res. 35, 1921-1928.
  • [3.43] Floarea O., Dobre T., Dinu S.V. 1999. Mass transfer kinetics for interfacially perturbed vertical liquid films. Chem. Eng. Sci. 54, 4061-4063.
  • [3.44] Arendt B., Dittmar D., Eggers R. 2004. Interaction of interfacial convection and mass transfer effects in the system CO2-water. Int. J. Heat Mass Transfer 47, 3649- 3657.
  • [3.45] Hauser M.J.B., Oberender J., Richter S., Bartels K., Müller S.C. 2005. Interfacial turbulence enhances oxygen transport into shallow liquid layers. Physica D 205, 170-180.
  • [3.46] Brian P.L.T., Vivian J.E., Mayr S.T. 1971. Cellular convection in desorbing surface-tension solutes from water. Ind. Eng. Chem. Fund. 10, 75-83.
  • [3.47] Warmuziński K., Buzek J. 1990. A model of cellular convection during absorption accompanied by chemical reaction. Chem. Eng. Sci. 45, 243-254.
  • [3.48] Warmuziński K., Buzek J., Podkański J. 1995. Marangoni instability during absorption accompanied by chemical reaction. Chem. Eng. J. 58, 151-160.
  • [3.49] Dagan Z., Pismen L.M. 1984. Marangoni waves induced by a multistable chemical reaction on thin liquid films. J. Coll. Interface Sci. 99, 215-225.
  • [3.50] Davies J.T., Rideal E.K. 1963. Interfacial phenomena. Academic Press, New York.
  • [3.51] Ahmad J., Hansen R.S. 1972. A simple quantitative treatment of the spreading of monolayers on thin liquid films. J. Coll. Interface Sci. 38, 601-604.
  • [3.52] Joos P., Pintens J. 1977. Spreading kinetics of liquids on liquids. J. Coll. Interface Sci. 60, 507-513.
  • [3.53] Afsar-Siddiqui A.B., Luckham P.F., Matar O.K. 2003. The spreading of surfactant solutions on thin liquid films. Adv. Coll. Interface Sci. 106, 183-236.
  • [3.54] Jensen O.E., Halpern D., Grotberg J.B. 1994. Transport of a passive solute by surfactant-driven flows. Chem. Eng. Sci. 49, 1107-1117.
  • [3.55] Halpern D., Jensen O.E., Grotberg J.B. 1998. A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85 333-52.
  • [3.56] Cachile M., Schneemilch M., Hamraoui A., Cazabat A.M. 2002. Films driven by surface tension gradients. Adv. Coll. Interface Sci. 96, 59-74.
  • [3.57] Sosnowski T.R., Gradoń L., Skoczek M., Droździel H. 1998. Experimental evaluation of importance of the pulmonary surfactant for oxygen transfer rate in human lungs. Int. J. Occup. Safety Ergon. 4, 391-409.
  • [3.58] Gradoń L., Sosnowski T.R. 2001. Mass transfer through the gas-liquid interface at the presence of adsorbed active phospholipid monolayer, in: Reaction Kinetics and the Development and Operation of Catalytic Processes (G.F. Froment, K.C. Waugh Eds.), Elsevier, Amsterdam, 283-288.
  • [3.59] Zalewska M. 2004. Transport tlenu z powietrza pęcherzykowego do krwi. Praca doktorska WIChiP PW, Warszawa.
  • [3.60] Sternling C.V., Scriven L.E. 1959. Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5, 514-521.
  • [3.61] Spekuljak Z. 1987. A criterion to determine the occurrence of the Marangoni effect in a thin liquid film. Chem. Eng. Sci. 42, 163-166.
  • [3.62] Agble D., Mendes-Tatsis M.A. 2000. The effect of surfactants on interfacial mass transfer in binary liquid-liquid systems. Int. J. Heat Mass Transfer 43, 1025-1034.
  • [3.63] Mendes-Tatsis M.A., Peres de Ortiz E.S. 1996. Marangoni instabilities in systems with an interfacial chemical reaction. Chem. Eng. Sci. 51, 3755-3761.
  • [3.64] Crooks R., Cooper-Whitez J., Boger D.V. 2001. The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem. Eng. Sci. 56, 5575-5592.
  • [3.65] McCallion O.N.M., Taylor K.M.G., Thomas M., Taylor A.J. 1996. The influence of surface tension on aerosols produced by medical nebulisers. Int. J. Pharmaceutics 129, 123-136.
  • [3.66] Sosnowski T.R., Gradoń L. 2001. The effect of dynamic surface tension on the output of pneumatic nebulization. J. Aerosol Sci. 32S1, S795-S796.
  • [3.67] Sosnowski T.R. 2002. Importance of the dynamic surface tension for the process of pneumatic atomization of aqueous solutions. Abstracts of 6th Int. Aerosol Conf., Taipei, Taiwan, 8-13.09.2002, vol. 2, 953-954.
  • [3.68] Hansen S., Peters G.W.M., Meijer H.E.H. 1999. The effect of surfactant on the stability of a fluid filament embedded in a viscous fluid. J. Fluid Mech. 382, 331-349.
  • [3.69] Lapham G.S., Dowling D.R., Schultz W.W. 2001. Linear and non-linear gravity-capillary water waves with a soluble surfactant. Exp. Fluids. 30, 448-457.
  • [3.70] Kumar S., Matar O.K. 2002. Parametrically driven surface waves in surfactant-covered liquids. Proc. Royal Soc. Lond. A 458, 2815-2828
  • [3.71] Lucassen J., Hansen R.S. 1967. Damping of waves on monolayer-covered surfaces. J. Coll. Interface Sci. 23, 319-328.
  • [3.72] Monroy F., Giermanska-Kahn J., Langevin D. 2000. Anomalous damping of capillary waves with surfactant solutions. J. Non-Equlib. Thermodyn. 25, 279-299.
  • [3.73] Lucassen J. 1968. Longitudinal capillary waves. Trans. Farady Soc. 64, 2221-2235.
  • [3.74] Noskov B.A., Zubkova T.U. 1995. Dilational surface properties of insoluble monolayers. J. Coll. Interface Sci. 170, 1-7.
  • [3.75] McKenna S.P., McGillis W.R., Bock E.J. 1998. The influence of surface films on near-surface vortical flows. Coll. Surfaces A. 118, 263-272.
  • [3.76] Tsai W.T. 1996. Effects of surfactant on free-surface turbulent shear flow. Int. Comm. Heat Mass Transfer 23, 1087-1095.
  • [3.77] Kaminsky V.A., Vyazmin A.V., Kulov N.N., Dilman V.V. 1998. Marangoni effect in the presence of bulk turbulence. Chem. Eng. Sci. 53, 3347-3353
  • [3.78] Bénard H. 1900. Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. 11, 1309-1328.
  • [3.79] Block M.J. 1956. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178, 650-651.
  • [3.80] Yih C.-S. 1968. Fluid motion induced by surface tension variation. Phys. Fluids 11, 477-480.
  • [3.81] Hoefsoloot H.J.C., Janssen L.P.B.M., Hoogstraten H.W. 1994. Marangoni convection around a ventilated air bubble under microgravity conditions. Chem. Eng. Sci. 49, 29-39.
  • [3.82] Pearson J.R.A. 1958. On convection induced by surface tension. J. Fluid. Mech. 4, 489-500.
  • [3.83] Tan K.K., Thorpe R.B. 1999. On convection driven by surface tension caused by transient heat conduction. Chem. Eng. Sci. 54, 775-783.
  • [3.84] Das K.S., Bhattacharjee J.K. 1999. Marangoni attractors. Physica A 270, 173-181.
  • [3.85] Białecki J., Hołyst J.A. 2003. Linear stability analysis in liquid layer with surface velocity gradient. Phys. Rev. E 67, 066311.
  • [3.86] Białecki J. 2004. Hydrodynamiczna niestabilność warstwy cieczy w obecności gradientu prędkości powierzchniowej. Praca doktorska. Wydział Fizyki PW.
  • [3.87] Selecki A. 1972. Specjalne metody rozdzielania mieszanin. WNT, Warszawa.
  • [3.88] Gawroński R. 1995. Procesy oczyszczania cieczy. OW PW, Warszawa.
  • [3.89] Vardar-Sukan F. 1998. Foaming: consequences, prevention and destruction. Biotechnology Adv. 16, 913-948.
  • [3.90] Vidyarthi A.S., Desrosiers M., Tyagi R.D., Valero J.R. 2000. Foam control in biopesticide production from sewage sludge. J. Ind. Microbiol. Biotechn. 25, 86-92.
  • [3.91] Pelton R. 2002. A review of antifoam mechanisms in fermentation. J. Ind. Microbiol. Biotechn. 29, 149-154.
  • [3.92] Neethling S.J., Cilliers J.J. 2001. Simulation of the effect of froth washing on flotation performance. Chem. Eng. Sci. 56, 6303-6311.
  • [3.93] Rubio J., Souza M.L., Smith R.W. 2002. Overview of flotation as a wastewater treatment technique. Minerals Eng. 15, 139-155.
  • [3.94] Pugh R.J. 2005. Experimental techniques for studying the structure of foams and froths. Adv. Colloid Interface Sci. 114-115, 239-251.
  • [3.95] Bhattacharjee S., Kumar R., Gandhi K.S. 1997. Prediction of separation factor in foam separation of proteins. Chem. Eng. Sci. 52, 4625-4636.
  • [3.96] Saleh Z.S., Hossain M.M. 2001. A study of the separation of proteins from multicomponent mixtures by a semi-batch foaming process. Chem. Eng. Process. 40, 371-378.
  • [3.97] Prins A. 1988. Principles of foam stability, in: Advances in food emulsions and foam (E. Dickinson, G. Stainsby, Eds.), Elsevier, London-New York, 91-122.
  • [3.98] Małysa K. 1992. Wet foams: formation, properties and mechanism of stability. Adv. Colloid Interface Sci. 40, 37-83.
  • [3.99] Garret P.R. 1993. Recent developments in the understanding of foam generation and stability. Chem. Eng. Sci. 48, 367-392.
  • [3.100] Bhakta A., Ruckenstein E. 1997. Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1-124.
  • [3.101] Danov K.D., Kralchevsky P.A., Ivanov I.B. 1999. Equilibrium and dynamics of surfactant adsorption monolayers and thin liquid films, in: Handbook of Detergents, Part A: Properties (G. Broze Ed.) Marcel Dekker, New York, 303-418.
  • [3.102] Prins A. 1999. Stagnant surface behaviour and its effect on foam and film stability. Coll. Surfaces A. 149, 467-473.
  • [3.103] Wilde P.J. 2000. Interfaces: their role in foam and emulsion behaviour. Curr. Opin. Coll. Interface Sci. 5, 176-181.
  • [3.104] Sosnowski T.R. 2003. Wpływ własności mechanicznych powierzchni ciecz-gaz na szybkość ociekania piany. Inż. Aparat. Chem. 42 (4s), 82-83.
  • [3.105] Bargieł I., Pawelec M.K., Sosnowski T.R. 2005. Investigation of foam stability for a cationic surfactant, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), EDU-SA, Wrocław, 131-134.
  • [3.106] Uhomoibhi J.O., Dawson K.A. 2000. Light scattering studies of the long time dynamics of foam. Prog. Colloid Polym. Sci. 115, 275-281.
  • [3.107] Bhakta A., Ruckenstein E. 1995. Decay of a standing foam. Langmuir 11, 1486-1492.
  • [3.108] Magrabi S.A. Dlugogorski B.Z., Jameson G.J. 1999. Bubble size distribution and coarsening of aqueous foams. Chem. Eng. Sci. 54, 4007-4022.
  • [3.109] Lunkenheimer K., Małysa K. 2003. A simple automated method of quantitative characterization of foam behaviour. Polym. Int. 52, 536-541.
  • [3.110] Pilon L., Fedorov A.G., Viskanta R. 2002. Analysis of transient thickness of pneumatic foams. Chem. Eng. Sci. 57, 977-990.
  • [3.111] Lunkenheimer K., Małysa K. 2003. Simple and generally applicable method of determination and evalution of foam properties. J. Surf. Detergents 6, 69-74.
  • [3.112] Velikov K.P., Velev O.D., Marinova K.G., Constantinides G.N. 1997. Effect of the surfactant concentration on the kinetic stability of thin foam and emulsion films. J. Chem. Soc., Faraday Trans. 93, 2069-2075.
  • [3.113] Pawelec M.K., Sosnowski T.R., Gradoń L. 2005. Stability of foams produced from aqueous surfactant solutions. Abstracts of 10th Mediterranean Congress of Chemical Engineering, Barcelona 15-18.11.2005, 157.
  • [3.114] Exerowa D. Churaev N.V., Kolarov T., Esipova E.N., Panchev N., Zorin Z.M. 2003. Foam and wetting films: electrostatic and steric stabilization. Adv. Coll. Interface Sci. 104, 1-24.
  • [4.1] Clements J.A., Brown E.S., Johnson R.P. 1958. Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. J. Appl. Physiol. 12, 262-268.
  • [4.2] Goerke J., Clements J.A. 1986. Alveolar surface tension and lung surfactant, in: Handbook of Physiology. American Physiological Society, Bethesda, Maryland, Sect. 3, vol. 3, 247-261.
  • [4.3] Notter R.H., Finkelstein J.N. 1984. Pulmonary surfactant: an interdisciplinary approach. J. Appl. Physiol. 57, 1613-1624.
  • [4.4] Hawgood S. 1992. The hydrophilic surfactant protein SP-A: molecular biology, structure and function, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 33-54.
  • [4.5] Keough K.M.W. 1992. Physical chemistry of pulmonary surfactant in the terminal air spaces, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 109-164.
  • [4.6] Podgórski A. 1991. Modelowanie procesów oczyszczania w układzie oddechowym człowieka. Rozprawa doktorska, IIChiP PW, Warszawa.
  • [4.7] Sosnowski T.R. 1997. Procesy powierzchniowe i hydrodynamiczne w układzie surfaktantu płucnego. Rozprawa doktorska, WIChiP PW, Warszawa.
  • [4.8] Williams M.C. 1992. Morphologic aspects of the surfactant system, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 87-107.
  • [4.9] Boonman A., Machiels F.H.J., Snik A.F.M., Egberts J. 1987. Squeeze-out from mixed monolayers of dipalmitoylphosphatidylcholine and egg phosphatidylglycerol. J. Coll. Interface Sci. 120, 456-468.
  • [4.10] Podgórski A., Gradoń L. 1993. An improved mathematical model of hydrodynamical self-cleansing of pulmonary alveoli, Ann. Occup. Hyg. 37, 347-365.
  • [4.11] Jobe A., Ikegami M. 1987. Surfactant for the treatment of respiratory distress syndrome. Am. Rev. Resp. Dis. 136, 1256-1275.
  • [4.12] Arvidson G. 1989. Lipid composition of surfactant, in: Surfactant and the respiratory tract (L. Ekelund, B. Jonson, L. Malm Eds.), Elsevier, Amsterdam, 29-32.
  • [4.13] Possmayer F. 1989. Biophysical properties of pulmonary surfactant, in: Surfactant and the respiratory tract (L. Ekelund, B. Jonson, L. Malm Eds.), Elsevier, Amsterdam, 39-55.
  • [4.14] Akino T. 1992. Lipid components of the surfactant system, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 19-31.
  • [4.15] Catena E. 1983. The components of alveolar surfactant of the human lung in normal and in pathological states, in: Pulmonary surfactant system (E.V. Cosmi, E.M. Scarpelli Eds.), Elsevier, Amsterdam, 33-38.
  • [4.16] Hills B.A. 1988. The biology of surfactant. Cambridge University Press, Cambridge.
  • [4.17] Van Golde L.M.G. 1989. Metabolic aspects of pulmonary surfactant: synthesis by alveolar type II cells and possible interactions with alveolar macrophages, in: Surfactant and the respiratory tract (L. Ekelund, B. Jonson, L. Malm Eds.), Elsevier, Amsterdam, 3-14.
  • [4.18] Pastrana-Rios B., Taneva S., Keough K.M., Mautone A.J., Mendelsohn R. 1995. External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface. Biophys. J. 69, 2531-2540.
  • [4.19] Ballard R.A., Ballard P.L. 1992. Prevention of neonatal Respiratory Distress Syndrome by pharmacological methods, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 539-560.
  • [4.20] Robbins C., Green R., Lasker M., Wiseman G., Holzman I.R. 1994. The lung of the premature infant: pathophysiology of disease and newer therapies. Mount Sinai J. Med. 61, 416-423.
  • [4.21] Walters D.V. 1992. The role of pulmonary surfactant in transepithelial movement of liquid, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amterdam, 193-213.
  • [4.22] John J. 1995. Alveolar surfactant function in relation to lung mechanics and lung clearance mechanisms. Ph.D. Thesis, University of Lund, Sweden.
  • [4.23] Cockshutt A.M., Possmayer F. 1992. Metabolism of surfactant lipids and proteins in the developing lung, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 339-377.
  • [4.24] Seeger W. 1984. Interaction of alveolar surfactant with plasma-derived proteins, especially fibrin monomer, as causative principle of surfactant dysfunction. Prog. Resp. Res. 18, 208-213.
  • [4.25] Gradoń L., Podgórski A. 1989. Hydrodynamical model of pulmonary clearance. Chem. Eng. Sci. 44, 741-749.
  • [4.26] Gradoń L., Podgórski A., Sosnowski T.R. 1996. Experimental and theoretical investigations of transport properties of DPPC monolayer. J. Aerosol Med. 9, 357-367.
  • [4.27] Sosnowski T.R., Gradoń L., Podgórski A. 1997. A model analysis of hydrodynamics of the lung surfactant system. 1st European Congress on Chemical Engineering, May 4-7, 1997, Florence, Proceedings, vol. 2, 1579-1582.
  • [4.28] Sosnowski T.R. 2002. Active hydrodynamic transport of airborne deposits in the presence of surfactant. Abstracts of 6th International Aerosol Conference, Taipei, Taiwan, 8-13.09.2002. vol. 1, 231-232.
  • [4.29] van Iwaarden J.F. 1992. Surfactant and the pulmonary defense system, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 215-227.
  • [4.30] Gradoń L., Podgórski A. 1995. Displacement of alveolar macrophages in the air space of human lung. Med. Biol. Eng. Computing 33, 575-581.
  • [4.31] Sosnowski T.R. 2001. Sorption-induced Marangoni microflows in the pulmonary surfactant system. Inż. Chem. Procesowa 22, 251-267.
  • [4.32] Gehr P., Green F.H.Y., Geiser M., Im Hof V., Lee N.M., Schürch S. 1996. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J. Aerosol Med. 9, 163-181.
  • [4.33] Sundler R. 1989. Surface stabilizing properties of phospholipids, in: Surfactant and the Respiratory Tract (L. Ekelund, B. Jonson, L. Malm Eds.), Elsevier, Amsterdam, 33-38.
  • [4.34] Kuroki Y. 1992. Surfactant protein SP-D, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 77-85.
  • [4.35] Gaynor C.D., McCormack F.X., Voelker D.R., McGowan S.E., Schlesinger L.S. 1995. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol. 155, 5343-5351.
  • [4.36] Whitsett J.A., Baatz J.E. 1992. Hydrophobic surfactant proteins SP-B and SP-C: molecular biology, structure and function, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 55-76.
  • [4.37] Taneva S.G., Keough K.M.W. 1995. Calcium ions and interactions of pulmonary surfactant proteins SP-B and SP-C with phospholipids in spread monolayers at the air/water interface. Biochim. Biophys. Acta 1236, 185-195.
  • [4.38] Clements J. 1957. Surface tension of lung extracts. Proc. Exp. Biol. Med. 95, 170-172.
  • [4.39] Notter R.H., Taubold R., Mavis R.D. 1982. Hysteresis in saturated phospholipid films and its potential relevance for lung surfactant functions in vivo. Exp. Lung Res. 3, 109-127.
  • [4.40] Enhörning G. 1977. Pulsating bubble technique for evaluating pulmonary surfactant. J. Appl. Physiol. 43, 198-203.
  • [4.41] Chung J.B., Shanks P.C., Hannemann R.E., Franses E.I. 1990. Spinning bubble tensiometry of aqueous dipalmitoylphosphatidylcholine and lung surfactant dispersions. Colloids Surfaces 43, 223-240.
  • [4.42] Schürch S., Bachofen H., Goerke J., Green F. 1992. Surface properties of rat pulmonary surfactant studied with the captive bubble method: adsorption, hysteresis, stability. Biochim. Biophys. Acta 1103, 127-136.
  • [4.43] Boyle J., Mautone A.J. 1982. A new surface balance for dynamic surface tension studies. Colloids Surfaces 4, 77-85.
  • [4.44] Schürch S., Goerke J., Clements J.A. 1978. Direct determination of volume-and-time-dependence of alveolar surface tension in excised lungs. Proc. Nat. Acad. Sci. 75, 3417-3434.
  • [4.45] Goerke J. 1992. Surfactant and lung mechanics, in: Pulmonary Surfactant: from molecular biology to clinical practice (B. Robertson, L.M.G. van Golde, J.J. Batenburg Eds.), Elsevier, Amsterdam, 165-192.
  • [4.46] Ivanova T. 1991. Surface pressure-area hysteresis of surface films formed by spreading of phospholipid liposomes. Colloids Surfaces 60, 263-273.
  • [4.47] Otis D.R. Jr, Ingenito E.P., Kamm R.D., Johnson M. 1994. Dynamic surface tension of surfactant TA: experiments and theory. J. Appl. Physiol. 77, 2681-2688.
  • [4.48] Sosnowski T.R. 2000. How to evaluate the pulmonary surfactant quality with the oscillating bubble technique. Prace WIChiP 26, 97-114.
  • [4.49] Kretzschmar G., Li J., Miller R., Motschmann H., Möhwald H. 1996. Characterisation of phospholipid layers at liquid interfaces. 3. Relaxation of spreading phospholipid monolayers under harmonic area changes. Coll. Surf. A. 114, 277-285.
  • [4.50] Lyklema J. 2000. Fundamentals of interface and colloid science. Academic Press, London-San Diego.
  • [4.51] Clements J.A., Hustead R.F., Johnson R.P. 1961. Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16, 444-450.
  • [4.52] Sosnowski T.R., Podgórski A. 1999. Assessment of the pulmonary toxicity of inhaled gases and particles with physicochemical methods. Int. J. Occup. Safety Ergon. 5, 433-449.
  • [4.53] Miller E., Pirożyński M., Jastrzębski J., Pawelec M., Sosnowski T.R. 2005. Pulmonary surfactant function in patients with acute lung injury/acute respiratory distress syndrome treated by mechanical ventilation. Critical Care 9 (S1), 39-40.
  • [4.54] Sosnowski T.R., Gradoń L., Podgórski A., Wróbel J., Pirożyński M. 1998. Ocena przydatności tensjometru pęcherzykowego PBS w diagnostyce schorzeń układu oddechowego. Materiały XVI OKIChiP, Kraków-Muszyna, 22-25.09.1998, Tom IV, 293-296.
  • [4.55] Sosnowski T.R. 2003. Dynamic surface tension as an indicator of lung function in health and disease. Biocyb. Biomed. Eng. 23, 89-98.
  • [4.56] Kazakov V.N., Vozianov A.F., Sinyachenko O.V., Trukhin D.V., Kovalchuk V.I., Pison U. 2000. Studies on the application of dynamic surface tensiometry of serum and cerebrospinal liquid for diagnostics and monitoring of treatment in patients who have rheumatic, neurological or oncological diseases. Adv. Coll. Interface Sci. 86, 1-38.
  • [4.57] Trukhin D.V., Sinyachenko O.V., Kazakov V.N., Lylyk S.V., Beokon A.M., Pison U. 2001. Dynamic surface tension and surface rheology of biological liquids. Coll. Surf. B. 21, 231-238.
  • [4.58] Stocks J., Hislop A.A. 2002. Structure and function of the respiratory system: developmental aspects and their relevance to aerosol therapy, in: Drug delivery to the lung (H. Bisgaard, C. O'Callaghan, G.C. Smaldone Eds.), Marcel Dekker, New York-Basel.
  • [4.59] Sosnowski T.R., Gradoń L., Podgórski A. 1995. Transport of aerosol deposits at the active surface of liquid layer. J. Aerosol Sci. 26, S541-S542.
  • [4.60] Sosnowski T.R., Gradoń L. 1996. Behavior of hydrophilic and hydrophobic particles at the monolayer of alveolar surfactant - a model study. J. Aerosol Sci. 27, S501-S502.
  • [4.61] Sosnowski T.R. 2004. Visualisation of flow in a liquid layer with the active interface. Proceedings of International Conference TRACER 3, Ciechocinek 22-24.06.2004, 299-304.
  • [4.62] Sosnowski T.R., Gradoń L. 2005. Wizualizacja efektów Marangoniego podczas deformacji powierzchni ciecz-gaz. Inż. Chem. Procesowa 26, 353-362.
  • [4.63] Sosnowski T.R., Gradoń L., Skoczek M., Droździel H. 1998. Experimental evaluation of importance of the pulmonary surfactant for oxygen transfer rate in human lungs. Int. J. Occup. Safety Ergon. 4, 391-409.
  • [4.64] Skoczek M., Gradoń L., Sosnowski T.R. 2001. Absorpcja gazu w ciekłej hipofazie w obecności zaadsorbowanej warstwy surfaktantu. Inż. Chem. Procesowa 22 (3E), 1267-1272
  • [4.65] Gradoń L., Sosnowski T.R. 2001. Mass transfer through the gas-liquid interface at the presence of adsorbed active phospholipid monolayer, in: Reaction Kinetics and the Development and Operation of Catalytic Processes (G.F. Froment, K.C. Waugh Eds.), Elsevier, Amsterdam, 283-288.
  • [4.66] Sosnowski T.R. 2003. Rheological properties of the air-liquid interface. 4-th European Congress of Chemical Engineering, Granada, Spain, 21-25.09.2003. Abstracts, Topic 5, 197-199.
  • [4.67] Pawelec M.K., Sosnowski T.R. 2003. Relaxation phenomena at the air-water interface with surfactants. Int. J. Appl. Mech. Eng. 8, 295-300.
  • [4.68] Pawelec M.K., Sosnowski T.R., Matyja O. 2004. Wyznaczanie lepkości i sprężystości dylatacyjnej monowarstwy surfaktantu na powierzchni cieczy w wadze Langmuira-Wilhelmy'ego. Inż. Chem. Procesowa 25, 1449-1454.
  • [4.69] Sosnowski T.R., Pawelec M.K. 2005. Dynamic response of the gas-liquid interface to deformation, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), EDU-SA, Wrocław, 139-143.
  • [4.70] Adamson W.A. 1963. Chemia fizyczna powierzchni. PWN, Warszawa.
  • [4.71] Gaines G.L. Jr. 1966. Insoluble monolayers at liquid-gas interfaces. Interscience Publishers, New York.
  • [4.72] Petty M.C. 1996. Langmuir-Blodgett films. An introduction. Cambridge University Press, Cambridge.
  • [4.73] Sosnowski T.R., Pawelec M.K., Gradoń L. 2006. Wpływ deformacji na własności dynamiczne powierzchni ciecz-gaz w obecności surfaktantów Inż. Chem. Procesowa 27, 93-106.
  • [4.74] Pawelec M.K., Sosnowski T.R. 2003. Langmuir-Wilhelmy balance studies of DPPC and CTAB films, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), OW PWr., Wrocław, 267-270.
  • [4.75] Sosnowski T.R., Pawelec M.K., Gradoń L. 2005. Mass transfer enhancement by dynamic effects in the lung surfactant system. Abstracts of 10th Mediterranean Congress of Chemical Engineering, Barcelona, 15-18.09.2005, s. 496.
  • [4.76] Sosnowski T.R. 2004. Interactions of deposited particles and lung liquids (surfactants), in: Aerosole in der Inhalationstherapie (G. Scheuch Ed.), Dustri-Verlag Dr. Karl Feistle, München, 10-20.
  • [4.77] Podgórski A., Gradoń L. 1991. Function of the pulmonary surfactant in the clearance of respiratory bronchioles. Chem. Eng. Comm. 110, 143-162.
  • [4.78] Gradoń L., Podgórski A. 1992. Mathematical model of dust retention in the human respiratory system. J. Aerosol Med. 5, 229-240.
  • [4.79] Gradoń L., Podgórski A. 1996. The retention of inhaled particles in the human respiratory system. Cytotoxic effect, in: Aerosol inhalation: recent research frontiers (J. Marijnissen, L. Gradoń Eds.), Kluwer, Dordrecht, 215-225.
  • [4.80] Gradoń L., Podgórski A. 1996. Alveolar macrophage (AM) mobility reduction as a result of long-term exposure to high dust concentration in inhaled air. Int. J. Occup. Safety Ergon. 2, 137-147.
  • [4.81] Kaminsky V.A., Vyazmin A.V., Kulov N.N., Dilman V.V. 1998. Marangoni effect in the presence of bulk turbulence. Chem. Eng. Sci. 53, 3347-3353.
  • [4.82] Sosnowski T.R., Gradon L., Podgórski A. 2000. Influence of insoluble aerosol deposits on the surface activity of the pulmonary surfactant: a possible mechanism of alveolar clearance retardation? Aerosol Sci. Techn. 32, 52-60.
  • [4.83] Dimitrov D.S., Panaiotov I., Richmond P., Ter-Minassian-Saraga L. 1978. Dynamics of insoluble monolayers. I. Dilational or elastic modulus, friction coefficient, and Marangoni effect for dipalmitoyl lecithin monolayers. J. Coll. Interface Sci. 65, 483-494.
  • [4.84] Lucassen J. 1968. Longitudinal capillary waves. Trans. Farady Soc. 64, 2221-2235.
  • [4.85] Sosnowski T.R., Gradoń L., Pawelec M.K. 2005. Liquid flows driven by interfacial effects, in: Oils and environment (J. Hupka, R. Aranowski Eds.), G.U.T., Gdańsk, 165-169.
  • [4.86] Sosnowski T.R. 2005. Dynamic surface phenomena in the lung surfactant system, in: Surfactants and dispersed systems in theory and practice (K.A. Wilk Ed.), EDU-SA, Wrocław, 285-290.
  • [4.87] Sosnowski T.R., Gradoń L., Podgórski A. 2000. Theoretical considerations on immediate interactions between inhaled particles and the pulmonary surfactant. J. Aerosol Sci. 31, S498-S499.
  • [4.88] Morrow P.E. 1988. Possible mechanisms to explain dust overloading of the lungs. Fundam. Appl. Toxicol. 10, 369-384.
  • [4.89] Kreyling W.G., Scheuch G. 2000. Clearance of particles deposited in the lungs, in: Particle-Lung Interactions (P. Gehr, J. Heyder Eds.), Marcel Dekker, New York-Basel, 323-376.
  • [4.90] Ferrin J., Oberdörster G. 1992. Translocation of particles from pulmonary alveoli into the interstitium. J. Aerosol Med. 5, 179-187.
  • [4.91] Sosnowski T.R. 2001. The superficial micro-flow towards aerosol particle deposited in the lungs. J. Aerosol Med. 14, 401.
  • [4.92] Swift D.L. 1996. Use of mathematical aerosol deposition models in predicting the distribution of inhaled therapeutic aerosols, in: Inhalation aerosols. Physical and biological basis for therapy (A.J. Hickey Ed.), Marcel Dekker, New York, 51-81.
  • [4.93] Sosnowski T.R., Gradoń L., Iskandar F., Okuyama K. 2003. Interaction of deposited aerosol particles with the alveolar liquid layer, in: Optimization of aerosol drug delivery (L. Gradoń, J. Marijnissen Eds.), Kluwer Academic Publishers, Dordrecht, 205-216.
  • [4.94] Gradoń L., Sosnowski T.R., Okuyama K., Iskandar F. 2004. Interaction of nanostructured particles with the lung surfactant, in: Nanostructured Materials and Their Application (W.W. Szymanski, P.E. Wagner, M. Itoh, T. Onachi Eds.), Facultas, Vienna, 145-156.
  • [4.95] Podgórski A., Sosnowski T.R., Gradoń L. 2001. Deactivation of the pulmonary surfactant dynamics by toxic aerosols and gases. J. Aerosol Med. 14, 455-466.
  • [4.96] Sosnowski T.R., Gradoń L. 1995. Influence of toxic gases on alveolar surface transport. J. Aerosol Med. 8, 211.
  • [4.97] Sosnowski T.R., Gradoń L. 1995. Zachowanie się monowarstwy surfaktantu płucnego w obecności mikrostężeń ozonu. Prace WIChiP PW 22, 7-22.
  • [4.98] Sosnowski T.R., Gradoń L. 1997. Influence of acid fogs on lung surfactant function. J. Aerosol Med. 10, 279.
  • [4.99] Sosnowski T.R., Podgórski A. 1998. Reduction of the lung surfactant activity by selected occupational aerosols. J. Aerosol Sci. 29S1, S307-S308.
  • [4.100] Podgórski A., Sosnowski T.R. 1999. Effect of environmental aerosols on the surface properties of pulmonary surfactant (PS). J. Aerosol Med. 12, 106.
  • [4.101] Podgórski A., Jankowski T., Sosnowski T.R. 2000. Badanie wpływu zanieczyszczeń gazowych na własności powierzchniowe surfaktantu płucnego. Prace WIChiP PW 26, 73-95.
  • [4.102] Podgórski A., Sosnowski T.R., Gradoń L. 2001. Utrata aktywności powierzchniowej surfaktantu płucnego w wyniku działania toksycznych zanieczyszczeń środowiska. Inż. Chem. Procesowa 22 (3D), 1151-1156.
  • [4.103] Sosnowski T.R., Gradoń L., Marraro G.A. 2004. Direct interactions between nitrous oxide and exogeneous pulmonary surfactant in vitro. Exp. Lung Res. 25, 311-318.
  • [4.104] Sosnowski T.R., Gradoń L. 1994. Zachowanie się monowarstwy surfaktantu płucnego w obecności wybranych leków mukolitycznych. Post. Aerozoloter. 2, 7-25.
  • [4.105] Alkiewicz J., Kniat-Mijal E., Sosnowski T.R. 1996. Oddziaływanie antybiotyków wziewnych na fosfolipidy surfaktantu, w: Postępy w aerozoloterapii (red. T. Płusa), MEDPRESS, Warszawa, 119-127.
  • [4.106] Hedenstierna G. 2002. Airway closure, atelectasis and gas exchange during anaesthesia. Minerva Anestesiol. 68, 332-336.
  • [4.107] McClellan R.O. 1996. A mechanistic approach to assessing the lung cancer risk of diesel exhaust and carbon black, in: Aerosol inhalation: Recent research frontiers (J.C.M. Marijnissen, L. Gradoń Eds.) Kluwer, Dordrecht, 27-78.
  • [4.108] Ciach T., Diaz L., van den Ijssel E., Marijnissen J. 2003. Application of electrohydrodynamic atomization in the production of engineered drug particles, in: Optimization of aerosol drug delivery (L. Gradoń, J. Marijnissen Eds.), Kluwer, Dordrecht, 189-204.
  • [4.109] Sosnowski T.R., Gradoń L. 2004. Badanie oporów aerodynamicznych inhalatorów proszkowych. Inż. Chem. Procesowa 25, 1619-1625.
  • [4.110] Moskal A., Sosnowski T.R., Gradoń L. 2004. CFD modeling as a tool in evaluation and development of inhalation devices. J. Aerosol Sci. - Abstracts of EAC 2004, vol. 1, S623-S624.
  • [4.111] Sosnowski T.R., Gradoń L. 2005. Improvement of particle resuspension by airflow destabilization. Abstracts of 2005 European Aerosol Conference (W. Maenhaut Ed.) Ghent, Belgium, 28.08-2.09.2005, 763.
  • [4.112] Podgórski A. 1997. Model transportu tlenu przez film cieczy pokryty monowarstwą surfaktantu na wadze Langmuira. Prace WIChiP PW 24, 17-38.
  • [4.113] Schuster H.G. 1993. Chaos deterministyczny. PWN, Warszawa.
  • [4.114] Pohorecki R., Moniuk W. 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions. Chem. Eng. Sci. 43, 1677-1684.
  • [4.115] Marraro G.A., Luchetti M., Galassini E.M., Abbiati G. 1999. Natural surfactant supplementation in ARDS in paediatric age. Minerva Anaesthosiol. 65, 92-97.
  • [4.116] Wolf S., Lohbrunner H., Busch T., Sterner-Kock A., Deja M., Sarrafzadeh A., Neumann U., Kaisers U. 2002. Small doses of exogeneous surfactant combined with partial liquid ventilation in experimental acute lung injury: effects on gas exchange, haemodynamics, lung mechanics, and lung pathology. Br. J. Anaesth. 87, 593-601.
  • [4.117] Sosnowski T.R., Gradoń L., Podgórski A. 1996. Transport tlenu z powietrza pęcherzykowego do krwi. Pomiar współczynnika wnikania masy do hipofazy w warunkach in vitro. Prace WIChiP PW 23, 43-52.
  • [4.118] Podgórski A., Gradoń L., Woźniakowska J., Sosnowski T.R. 1996. Model transportu tlenu z powietrza pęcherzykowego do krwi. Prace WIChiP PW 23, 27-42.
  • [4.119] Gradoń L., Podgórski A., Sosnowski T.R. 1998. Transport tlenu w obszarze pęcherzyka płucnego. XVI Ogólnopolska Konferencja IChiP, Kraków-Muszyna, 22-25.09.1998, Materiały, t. I, 150-154.
  • [4.120] Gradoń L., Białecki P., Hołyst J., Sosnowski T.R. 2000. Rola surfaktantu w transporcie masy przez powierzchnię międzyfazową ciecz-gaz. Inż. Chem. Procesowa 21, 163-181.
  • [4.121] Pearson J.R.A. 1958. On convection induced by surface tension. J. Fluid. Mech. 4, 489-500.
  • [4.122] Probstein P.F. 1994. Physicochemical hydrodynamics. J. Wiley & Sons, New York.
  • [4.123] Białecki J., Hołyst J.A. 2003. Linear stability analysis in liquid layer with surface velocity gradient. Phys. Rev. E 67, 066311.
  • [4.124] Białecki J. 2004. Hydrodynamiczna niestabilność warstwy cieczy w obecności gradientu prędkości powierzchniowej. Praca doktorska, Wydział Fizyki PW, Warszawa.
  • [4.125] Sosnowski T.R. 2006. Kinetyka ruchu masy w warstwie cieczy z deformowaną powierzchnią. Inż. Aparat. Chem. - w przygotowaniu
  • [4.126] Sosnowski T.R., Moskal A., Gradoń L. 2006. Dynamics of oro-pharyngeal aerosol transport and deposition with the realistic flow pattern - accepted to Inhalation Toxicology.
  • [4.127] Moskal A., Gradoń L. 2002. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle J. Aerosol Sci. 33, 1525-1539.
  • [4.128] Miller E. 2006. Ocena czynności surfaktantu płucnego we wczesnej fazie ostrej niewydolności oddechowej u pacjentów wymagających wentylacji mechanicznej. Rozprawa doktorska, Klinika Anestezjologii i Intensywnej Terapii, Centrum Medyczne Kształcenia Podyplomowego, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0020-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.