PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Czynniki warunkujące rozwój delaminacji wewnętrzych w laminatach polimerowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Factors affecting propagation of buckling delaminations
Języki publikacji
PL
Abstrakty
PL
Praca składa się z sześciu rozdziałów uzupełnionych czterema dodatkami. W rozdziale l przedstawiono, istotne dla omawianych zagadnień, cechy kompozytów polimerowych o budowie warstwowej (laminatów) oraz charakterystyczne cechy mechanizmu ich rozwarstwiania. Rozdział 2 jest poświęcony zagadnieniom wyznaczania wartości krytycznych współczynnika uwalniania energii (WUE) w odniesieniu do rozwarstwiania laminatów. Część pierwsza rozdziału zawiera omówienie głównych, stosowanych w tym przypadku metod i opiera się na studiach literaturowych. Część druga rozdziału dotyczy zagadnienia niepożądanych deformacji wtórnych próbek i przedstawia wyniki prac własnych autora. Rozdział 3 dotyczy czynników wpływających na odporność laminatu na rozwarstwianie. Częściowo treść rozdziału jest wynikiem studiów literaturowych. Wyniki prac własnych przedstawiono w podrozdziale 3.5. Dotyczą one zmian wartości krytycznych WUE, w przypadku wzmocnienia w postaci tkanin, zależnie od konfiguracji wzmocnienia względem kierunku rozwoju delaminacji oraz zależnie od sposobu pękania. Rozdział 4 zawiera wyniki badań fraktograficznych umożliwiających wyjaśnienie mechanizmów rozpraszania energii biorących udział w procesie delaminacji. W części pierwszej rozdziału, opierając się na własnej dokumentacji fraktograficznej i studiach literaturowych, przedstawiono elementarne mechanizmy rozpraszania energii. Podrozdział 4.4 zawiera dorobek własny autora. Przedstawiono w nim mechanizmy rozpraszania energii w przypadku wzmocnienia w postaci tkanin i zawarto propozycję wyjaśnienia przyczyn stosunkowo wysokiej odporności takiego laminatu na rozwarstwianie. Rozdział 5 dotyczy badania możliwości rozwoju rozwarstwień w aspekcie ich geometrii oraz właściwości sprężystych warstw laminatu ulegających separacji. Przedstawiono w nim problematykę wyznaczania składowych WUE (separacji warunków I i II sposobu pękania), modelowania delaminacji, a także wpływu geometrii odwarstwienia oraz zmian relacji stałych sprężystości odwarstwienia i laminatu macierzystego na proporcje i wartości składowych WUE. Wyniki prac własnych autora zawierają podrozdziały 5.3 do 5.6, które dotyczą dwu ostatnich czynników. Pracę zamyka rozdział 6 zawierający podsumowanie i propozycję kierunków dalszych badań. Uzupełnieniem pracy są cztery dodatki. Pierwszy zawiera wyniki analizy różnic w wartościach krytycznych GIc, GIIc i kąta fazowego zależnie od formuły obliczeniowej stosowanej do opracowania wyników pomiarów. Drugi zawiera informacje dotyczące próbek zaprojektowanych przez autora i wykorzystanych do badań przedstawionych w podrozdziale 3.5 oraz wyniki tych badań. Trzeci zawiera informacje dotyczące geometrii analizowanych delaminacji, proporcji stałych sprężystości materiałów odwarstwienia i laminatu macierzystego oraz geometrii siatki elementów skończonych wykorzystywanych w badaniach własnych, przedstawionych w podrozdziałach 5.3-5.6, oraz wybrane szczegółowe wyniki tych badań. Ostatni zawiera porównanie wyników niektórych badań numerycznych i eksperymentalnych wykonanych przez autora.
EN
The work presented covers problems of delaminations embedded in polymeric laminates reinforced with continuous fibers. The text is presented in six chapters. The first chapter reviews the basic nature of laminates and delamination phenomenon. The second one presents methods used for characterizing resistance of laminates against delamination as well as comparison of various data reduction methods. Also, numerical analysis of the effects of the specimens secondary deformations on the Fracture Modes variation along the delamination fronts in Mode I and Mode II tests is included. The third chapter deals with the effects of various factors affecting delamination resistance of laminates. Particular emphasis is put on the effects resulting from the reinforcement arrangement. This chapter is supplemented by Chapter 4 containing the fractographic evidences that explain relatively high delamination resistance of laminates reinforced with fabrics. Chapter 5 contains the results of the numerical analysis concerning the effects of the mechanical properties of laminate layers, geometry of buckling delaminations and thermal deformations on the magnitude and distribution of the Strain Energy Release Rate, (SERR), components along the delamination boundaries. Also, a short description of the mode separation procedures is included. Chapter 6 contains conclusions and suggestions for further research.
Rocznik
Tom
Strony
3--142
Opis fizyczny
Bibliogr. 212 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Techniki Lotniczej i Mechaniki Stosowanej Politechniki Warszawskiej
Bibliografia
  • 1. Adeyemi N.B., Sruvakumar K:N.: Delamination Fracture Toughness of Woven-Fabric Composites Under Mixed-Mode Loading. AIAA J., vol. 37. No 4, s. 517-520.
  • 2. Alif N., Carlsson L.A., Boogh L.: The Effect of Wave Pattern and Crack Propagation Direction on Mode I Delamination Resistance of Woven Glass and Carbon Composites. Composites Part B, 298, 1 998, s. 603-611.
  • 3. Aliyu A.A., Daniel I.M.: Effects of Strain Rate on Delamination Fracture Toughness of Graphite/Epoxy. Delamination and Debonding of Materials, ASTM STP 876, 1985, s. 336-448.
  • 4. Allix O., Leveque D., Perret L.: Identification and Forecast of Delamination and Composite Laminates by an Interlaminar Interface Model. Composite Science and Technology, 58, 1998, s. 671-678.
  • 5. ANSYS Theory Manual, v.5.4.
  • 6. Arcan L., Daniel I.M.: SEM Fractography of Pure and Mixed-Mode Interlaminar Fractures in Graphite/Epoxy Composites. Fractography of Modern Engineering Materials: Composites and Materials. ASTM STP 948, eds. J.E. Masters, J.J. Au, American Society for Testing and Materials, Philadelphia 1987, s. 41-67.
  • 7. Ashizawa M.: Fast Interlaminar Fracture of a Compressively Loaded Composite Containing a Defect. 5th DoD/NASA Conf. on Fibrous Composites in Structural Design, Naval Air Development Center, Rapport 81-()96-60, New Orlean, January 1981.
  • 8. Asp L.E.: The Effect of Moisture and Temperature on the Interlaminar Delamination of a Carbon/Epoxy Composite. Composite Science and Technology, 58, 1998, s. 967-977.
  • 9. ASTM 05528-01. Standard test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
  • 10. ASTM D6671-0 l. Standard test Method for Mixed Mode I - Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
  • 11. Bao G., Ho S., Suo Z., Fan B.: The Role of Material Orthotropy in Fracture Specimens for Composites. Int. J. of Solids and Structures, vol. 29, No 9, 1992, s. 1105- 1116.
  • 12. Bascom W.D., Gweon S.Y.: Fractography and Failure Mechanisms of Carbon Fiber-Reinforced Composite Materials w Fractography and Failure Mechanisms of Polymers and Composites. Ed. A.C. Roulin-Moloney, Elsevier Science and Technology, London 1989, s. 351-385.
  • 13. Bazhenov S.L.: Interlaminar and lntralaminar Fracture Modes in 0/90 Cross-ply Glass/Epoxy Laminate. Composites, 26, 1995, s. 125-133.
  • 14. Becht G.J,. Gillespie J.W., jr.: Numerical and Experimental Evaluation of the Mode III Interlaminar Fracture Toughness of Composite Materials. Polymer Composites, vol. 10, No 5, 1989, s. 293-303.
  • 15. Becht G.J., Gillespie J.W., jr.: Design and Analysis of the Crack Rail Shear Specimen for Mode III Interlaminar Fracture. Composite Science an d Technology, 31, 1988, s. 143-157.
  • 16. Benzeggagh M.L., Kenane M.: Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Composite Science and Technology, 56, 1996, s. 439-449.
  • 17. Berry J.P.: Determination of Fracture Energy by the Cleavage Technique. J. of Physics, 34, 1963, s. 62-68.
  • 18. Bhashyam S., Davidsen B.D.: Evaluation of Data Reluction Methods for the Mixed Mode Beneling Test. AIAA J., vol. 35, No 3, 1997. s. 546-552.
  • 19. Bjerken C., Peterson C.: A Numerical Method for Calculating Stress Intensity Factors for Interface Cracks in Bimaterials. Engineering Fracture Mechanics, 68, 2001, s. 235-246.
  • 20. Bochenek A.: Elementy mechaniki pękania. Część I. Podręcznik dla materiałoznawców. Wyd. Politechniki Częstochowskiej, Częstochowa 1998.
  • 21. Bohr A.J., Ronghi R., Qaddoumi N.: Microwave. In: Nondestructive Evaluation: Theory, Techniques and Applications. Ed.: P.J. Shull, Marcel Dekker Inc., New York 2002, s. 645-720.
  • 22. Bolotin V.V.: Delamination in Composite Structures: its Origin, Buckling Growth and Stability. Composites: Part B 27B. 1996, s. 129-145.
  • 23. Bolotin W.W.: Mieislojnoje razruszenije kompozitow pri kombinirowannom nagruzenii. Miechanika Kompozitnych Matieriałow, No 3, 1988, s. 410-418.
  • 24. Bolotin W.W.: Diefiekty tipa passlojenije w konstrukcjach iz kompozitnych matieriałow. Miechanika Kompozitnycb Matieriałow, No 2, 1984, s. 239-255.
  • 25. Bradley W.L.: Relationship of Matrix Toughness to Interlaminar Fracture Toughness, in: Application of Fracture Mechanics to Composite Materials. Ed. K. Friedrich, Elsevier, Amsterdam 1989, s. 159-187.
  • 26. Bradley W.L., Coheen R.N.: Matrix Deformation and Fracture in Graphite-Reinforced Epoxies, Delamination and Debonding of Materials. ASTM STP 876, ed. W.S. Jordan, American Society for Testing and Materials, Philadelphia 1985, s. 389-410.
  • 27. Bradley W.L., Coheen R.N.: Delamination and Transverse Fracture in Graphite/Epoxy Materials. Mechanical Behaviour of Materials-IV, Proc. of the Forth Int. Conf., eds. J. Carlsson and H.G. Ohlson, Stockholm 1983, s. 595-601.
  • 28. Buchholtz F.G., Herrmann K.: A Note on Generalized Applications of the Modified Crack Closure Integral Method. Proc. of the 3rd Int. Conf. on Numerical Methods in Fracture Mechanics, Swansea 26-30 March 1984, s. 149-163.
  • 29. Bui H.D., Proxi J.M.: Numerical Analysis of Stress Intensity Factors in Mixed Modes Problems by Path Independent Integrals JI and JII Proc. of the 3rd Int. Conf. on Numerical methods in fracture mechanics, Swansea, 26-28 March 1984, s. 139-147.
  • 30. Cantwell W.J.: The Influence of Loading Rate on the Mode II Interlaminar Fracture Toughness of Composite Materials. J. of Composite Materials, vol. 31, No 14, 1997, s. 1364-1380.
  • 31. Cantwell W.J., Roulin-Moloney A.C.: Fractograpby and Failure Mechanisms of Unfilled and Particulate Filled Epoxy Resin. In: Fractography and Failure Mechanisms of Polymers and Composites. Ed. A.C. Roulin-Moloney, Elsevier, London 1989, s. 233-290.
  • 32. Carleto C., Bradley W., Henrikson M.: Correspondence between Stress Fields and Damage Zones Ahead of Crack Tip of Composites Under Mode I and Mode II Delamination. ICCM V and ECCM II, vol. 3 eds. F.L. Matthews, N.C.R. Buskell, J.M. Hodgkinson, J. Morton, Elsevier, London 1987, s. 3.378-3.387.
  • 33. Carlsson L.A., Gillespie J.E., jr., Pipes R.B.: On the Analysis and design of the End Notched Flexure (ENF)Specimen for Mode II Testing. J. of Composite Materials, 20, 1986, s. 594-604.
  • 34. Carlsson L.A., Gillespie J.W., jr., Whitney J.M.: Fracture Mechanics Analysis of the End Notched Flexure Specimen. In: Proc. of the 1-st Conf. on Composite Materials, Technomic Publishing, Lancaster, PA. 1986, s. 421.
  • 35. Carter G.H., Kibler K.G.: Rapid Moisture-Characterization of Composites and Possible Screening Application. J. of Composite Materials, vol. 10, 1976, s. 335-353.
  • 36. Chai H.: Three-dimensional Fracture Analysis of Thin-film Debonding. Int. J. of Fracture, 46,1990, s. 237-256.
  • 37. Chai H.: Interlaminar Shear Fracture of Laminated Composites. Int. J. of Fracture 43, 1990, s. 117-131.
  • 38. Chai H.: The Characterization of Mode I Delamination Failure in Non-woven, Multidirectional Laminates. Composites, vol. 15, No 4, 1984, s. 277-290.
  • 39. Chai H., Babcock C.D.: Two-Dimensional Modelling of Compressive Failure in Delaminated Laminates. J. of Composite Materials, vol. 19, January 1985, s. 67-98.
  • 40. Chai H., Babcocke C.D., Knauss W.G.: One Dimensional Modelling of Failure in Laminated Plates by Delamination Buckling. Int. J. Solids Structures, vol. 17, No 11, 1981, s. 1069-1083.
  • 41. Chan W.S., Rogers Ch., Cronkhite I.D., Martin J.: Delamination Control of Composite Rotor Hubs. J. of the American Helicopter Society, July 1986, s. 60-69.
  • 42. Chapman T.J., Smiely A.J., Pipes R.B.: Rate and Temperature Effects on Mode II Interlaminar Fracture Toughness in Composite Materials. ICCM VI and ECCM II, vol. 3, eds. F.L. Matthews, N.C.R. Buskell, J.M. Hodgkinson, J. Morton, Elsevier, London 1987, s. 3.295-3.304
  • 43. Charalambides P.G., Lund J., Evans A.G., McMeeking R.M.: A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces. J. of Applied Mechanics, Transaction of the ASME. vol. 56, March 1989, s. 77-82.
  • 44. de Charentenay F.X., Harry J.M., Pre! Y.J., Benzeggagb M.L.: Characterizing the Effect of Delamination Defect by Mode I Delamination Test. Effects of Defects in Composite Materials. ASTM STP 836, American Society for Testing and Materials, 1984, s. 84-103.
  • 45. Choi N.S., Kinloch A.J., Williams J.G.: Delamination Fracture of Multidirectional Carbon-Fiber/Epoxy Composites under Mode I, Mode II and Mixed-Mode I/II Loading. J. of Composite Materials, vol. 33, No 1, 1999, s. 73-101.
  • 46. Chou I., Kimpara I., Kageyama K., Ohsawa I.: Mode I and Mode II Fracture Toughness Measured Between Differently Oriented Plies in Graphite/epoxy Composites. Composite Materials: Fatigue and Fracture. 5th Volume, ASTM STP 1230, ed.: R.H. Martin, American Society for Testing and Materials, Philadelphia 1995, s. 132-151.
  • 47. Compston P., Jar P-Y., B.: The Influence of Fibre Volume fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinyl Ester Composite. Applied Composite Materials, 6, 1999, s. 353-368.
  • 48. Czarnocki P.: Uwagi dotyczące wyznaczania odporności na rozwarstwienia struktur dwumateriałowych. Kompozyty, 4, 2004, s. 200-204.
  • 49. Czarnocki P.: Growth Potential of High Aspect Ratio Elliptic Delaminations. 14th European Conference on Fracture, EAMS Pub., 2002, s. 457-465.
  • 50. Czarnocki P.: WUE a konfiguracja włókien zbrojenia. XIX Sympozjum Zmę—czenia i Mechaniki P—ękania, Bydgoszcz-Pieczyska 2002, s. 111-116.
  • 51. Czarnocki P.: Możliwości rozwoju delaminacji zależnie od kierunków zbrojenia i obciążeń mechaniczno-cieplnych. VIII Krajowa Konf. Mechaniki Pę—kania, Zesz. Nauk. Politechniki Świętokrzyskiej, Mechanika, 73, 2001, s. 147-153.
  • 52. Czarnocki P.: Circular Delaminations - The Effect of Thermal Strains on the Strain Energy Release Rate. Mechanics of Composite Materials, No 1, vol. 37, 2001, s. 67-70.
  • 53. Czarnocki P.: Effect of Reinforcement Arrangement on Distribution of GI, GII and GIII along Fronts of Circular Delaminations in Orthotropic Composite Plates. Fracture of Polymers, Composites and Adhesives, ESIS Publication 27, Elsevier, Amsterdam 2000. s. 49-60.
  • 54. Czarnocki P.: Modelowanie wstępnej fazy propagacji rozwarstwienia w próbce typu DCB, stosowanej do wyznaczania GIc, XXXVII Symp.. "Modelowanie w Mechanice", Zesz. Nauk. Politechniki Śląskiej, Z. 9, 1999, s. 45-50.
  • 55. Czarnocki P.: Numerical Evaluation of the Longitudinally Split Beam Specimen for Determinarion of the GIIIc Brittle Matrix Composite, 5, eds. A.M. Brandt, V.C. Li, I.H. Marshall, Woodhead Pub. Ltd., Cambridge and Warsaw 1997, s. 548-556.
  • 56. Czarnocki P.: Experimental Comparison of Interlaminar Toughness of Carbon/PEEK. Carbon/Epoxy and Glass/Epoxy Composites. J. of Theoretical and Applied Mechanics, 2, 33, 1995, s. 443-453.
  • 57. Czarnecki P., Pirga M.: Same Remarks on DCB Test. Brittle Matrix Composite, 4, eds. A.M. Brandt, V.C. Li, I.H. Marshall, Woodhead Pub., Cambridge and Warsaw 1994, s. 125-134 .
  • 58. Cvitovich M., Lang R.W.: Polymer Matrix Effects on Interlaminar Crack Growth in Advanced Composites under Mixed-mode Conditions. Composite Testing and Standardization ECCM-CI'S2, European Conf. on Composites Testing and Standarization, eds.: P.J. Hogy, K. Schulter, H. Wittich, Woodhead Pub., Hamburg 1994, s. 543-551.
  • 59. Daniel I.M.: Rate Effects on Delamination Fracture Toughness of Graphite/Epoxy Composites. Composite Structures IV. Ed. I.H. Marshall, vol. 2, s. 2.258-2.271.
  • 60. Davidson B.D.: Prediction of Delamination Growth in Laminated Structures. Failure Mechanisms in Advanced Polymeric Composites. AMD, vol. 196, 1994, s. 43-65.
  • 61. Davidson B.D.: Energy Release Rate Determination for Edge Delamination under Combined In-Plane, Bending and Hygrothermal Loading. Part I - Delamination at a Single Interface. J . of Composite Materials, vol. 28, No 11, 1994, s. 1009-1031.
  • 62. Davidson B.D., Fariello P.L., Hudson R.C., Sundararamao V.: Accuracy Assessment of the Singular-Fiel-Based Mode-Mix Decomposition Procedure for the Prediction of Delamination. Composite Materials: Testing and Design. Thirteen Volume, ASTM STP 1242, S.J. Hooper, ed., American Society for Testing and Materials, 1997, s. 109-128.
  • 63. Davidson B.D., Hu H., Schapery R.A.: An Analytical Crack-Tip Element for Layered Elastic Structures. Transaction of the ASME, vol. 62, June 1995, s. 294-305.
  • 64. Davidson B.D., Krafchak T.M.: Analysis of Instability-Related Delamination Growth Using a Crack Tip Element. AIAA J., vol. 31, No 11, 1993, s. 2130-2136.
  • 65. Davies P., Casari P., Carlsson L.A.: Influence of Fibre Fraction on Mode II Interlaminar Fracture Toughness of Glass/epoxy Using 4ENF Specimen. Composite Science and Technology, 65, 2005, s. 295-300.
  • 66. Davies P., de Charentenay F.X.: The Effect of Temperature on the Interlaminar Fracture of Tough Composites. ICCM VI and ECCM II, vol. 3, eds. F.L. Matthews, N.C.R. Buskell, J.M. Hodgkinson. J. Morton, Elsevier, London 1987, s. 3.284-3.294.
  • 67. Davies P., Kausch H.H., Williams J.G., Kinloch A.J., Charalambides M.N., Pavan A., Moor D.R., Prediger R., Robinson I., Burgoyne N., Friedrich K., Witteb H., Rebela C.A., Torres M.A., Ramsteiner F., Melve B., Fischer M., Roux N., Martin D., Czarnocki P., Neville D., Verpoest T. Gaffaux B., Lee R., Walls K., Trigwell K., Partridge I.K., Jaussaud J., Andersen S., Giraud Y., Hale G., McGrath G.: Round Rabin Interlaminar Fracture Testing of Carbon Fibre Reinforced Epoxy and PEEK Composites. Composite Science and Technology, 43, 1992, s. 129-136.
  • 68. Donaldson S.L.: Interlaminar Fracture Due to Tearing, Mode III. ICCM & ECCM, vol. 3, 1987, s. 3.274-3.283.
  • 69. Donaldson S.L.: Fracture Toughness Testing of Graphite/epoxy and Graphite/PEEK Composites. Composites, vol. 16. No 2, 1985, s. 103-112.
  • 70. Donaldson S.L., Mall S.: Mode III Interlaminar Fracture of Toughened Resin Composites. Proc. of the 7th lnt. Conf. on Composite Materials, Guangzhon, China, 1998, s. 639-644.
  • 71. Dornheim M.A.: Composites Experts Study Flight 587 Stabilizer. Aviation Week & Space Technology, 3, 2001, s. 36-37.
  • 72. Ducept F., Davies P., Gamby D.: An Experimental Study of Validate Tests used to Determine Mixed-mode Failure of Glass/epoxy Composites. Composites Part A, 28A, 1997, s. 719-729.
  • 73. Ducept F., Gamby D., Davies P.: A Mixed-mode Failure Criterion Derived from Tests on Symmetric and Asymmetric Specimens. Composite Science and Technology, 59, 1999, s. 609-619.
  • 74. Dym C.L., Shames I.H.: Solid Mechanics. A Variational Approach. McGraw-Hill Kogakusha, Tokyo 1973.
  • 75. Dyson I.N., Kinloch AJ., Okada A.: The Interlaminar Failure Behaviour of Carbon Fibre/polyether-ether-ketone Composites. Composites, vol. 25, No 3, 1994, s. 189-193.
  • 76. Friedrich, K.: Fractographic Analysis of Polymer Composites. In: Application of Fracture Mechanics to Composite Materials. Ed. K. Friedrich, Elsevier, Amsterdam 1989, s. 425-487.
  • 77. Gautesen A.K., Dundurs J.: The Interface Crack Under Combined Loading. J. of Applied Mechanics, Translations of the ASME, vol. 55, September 1988, s. 580-586.
  • 78. Gautesen A.K., Dundurs J.: The Interface Crack in a Tension Field. J. of Applied Mechanics, Translations of the ASME, vol. 54, March 1987, s. 93-98.
  • 79. Giare, G.S., Campbell D.: A Method to Determine the Fracture Toughness of Unidirectional Fibre Reinforced Composites in Mode II (Forward Shear), Using a Thin Tabular Specimen. Engineering Fracture Mechanics, vol. 27, No 6, 1987, s. 683-695.
  • 80. Gilchrist M.D., Svensson N.: A Fractographic Analysis of Delamination with Multidirectional Carbon/epoxy Laminates. Composite Science and Technology, 55, 1995, s. 195-207.
  • 81. Gołaski L.: Elementy doświadczalnej mechaniki pękania. Podręcznik akademicki, Oddział Wydawniczy Politechniki Świętokrzyskiej, Kielce 1992.
  • 82. Guedra D., Lang D., Rouchon J., Marais C., Sigety P.: Fracture Tougbness in Mode I: A Comparison of Various Test Methods. ICCM VI and ECCM II vol. 3, eds. F.L. Matthews, N.C.R. Buskell, J.M. Hodgkinson, J. Morton, Elsevier, London 1987, s. 3.346-3.357.
  • 83. Hahn H.T.: A Mixed-Mode Fracture Criterion for Compasile Materials. Composites Technology Review, 5, 1983, s. 26-29.
  • 84. Hahn H.T., Jonannesson T.: A Correlation between Fracture Energy and Fracture Morphology in Mixed-mode Fracture Composites. Ed. J. Carlsson, N.G. Ohlson. Mechanical Behaviour of Materials-IV, vol. 1, Proc. of the Fourth Int. Conf., Stockholm August, Oxford 1983, s. 431-438.
  • 85. Handbook of Polymer Testing. Ed. R. Brown, Marcel Deckker Inc., New York 1999.
  • 86. Hashemi S., Kinloch A.J., Williams G.: Mixed-Mode Fracture in Fiber-Polymer Composite Laminates, Composite Materials: Fatigue and Fracture. Third Volume. ASTM STP 1110, ed. Okada K.O., American Society of Testing and Materials, Philadelphia 1991, s. 143-168.
  • 87. Hashemi S., Kinloch A.J., Williams J.G.: Mechanics and Mechanism of Delamination in a Poly(ether-sulphone)/Fibre Composite. Composite Science and Technology, 37, 1990, s. 429-462.
  • 88. Hashemi S., Kinloch A.J., Williams J.G.: The Analysis of Interlaminar Fracture in Uniaxial Fibre-polymer Composites. Proc. R. Soc. Lond. A427, 1990, s. 173-199.
  • 89. Hashemi S ., Kinloch A.J., Williams J.G.: The Effects of Geometry, Rate and Temperature on Mode I, Mode II and Mixed-Mode I/II Interlaminar Fracture of Carbon-Fibre/Poly(ether-ether-ketone) Composites. J. of Composite Materials, vol. 24, 1990, s. 918-956.
  • 90. Hibbs M.F., Bradley W.L.: Correlations between Micromechanical Failure Processes and the Delamination Toughness of Graphite/Epoxy "Systems". Fractography of Modern Engineering Materials: Composites and Materials, ASTM STP 948, eds. J.E. Masters, J.J. Au, American Society for Testing and Materials, Philadelphia 1987, s. 68-97.
  • 91. Hutchinson J.W., Mear M.E., Rice J.R.: Crack Paralleling an Interface Between Dissimilar Materials. J. of Applied Mechanics, transaction of the ASME, vol. 54, December 1987, s. 828-832.
  • 92. Hutchinson J.W., Suo Z.: Mixed Mode Cracking in Layered Materials. Advances in Applied Mechanics, vol. 29, 1991, s. 63-191.
  • 93. Hwu C., Kao C.J., Chang L.E.: Delamination Fracture Criteria for Composite Laminates. J. Of Composite Materials, vol. 29, No 15, 1995, s. 1962-1987.
  • 94. Ireman T., Thesken J.C., Greenhalgh E., Sharp R., Gadke M., Maisen S., Ousset Y., Roudolff F., La Barbera A.: Damage Propagation in Composite Structural Elements - Coupon Experiments and Analyses. Composite Structures, 36, 1996, s. 209-220.
  • 95. Ishikawa H., Kitagawa H., Okamura H.: J lntegral of Mixed Mode Crack and Application. ICM 3, vol. 3 Cambridge, August 1979, s. 447-454.
  • 96. Jacobsen T.K., Sorensen B.F.: Mode I Intralaminar Crack Growth in Composites - Modelling of R-curves from Measured Bridging Laws. Composite Part A 32, 2001, s. 1-11.
  • 97. Jane K.C., Yin W-L.: Refined Buckling and Postbuckling Analysis of Two-dimensional Delaminations-I. Analysis and Validation. Int. J. of Solids and Structures, vol. 29, No 5, 1992, s. 591-610.
  • 98. Johnson M.J., Sridbaran S.: Evaluation of strain Energy Release Rates in Delaminated Laminates Under Compression. AIAA J., vol. 37, No 8, 1999, s. 954-963.
  • 99. Jones R.M.: Mechanics of Composite Materials. McGraw-Hill, New York 1999.
  • 100. Jordan W.M., Bradley W.L., Moulton R.J.: Relating Resin Mechanical Properties to Composite Delamination Fracture Toughness. J. of Composite Materials, vol. 23, Sept. 1989, s. 923-943.
  • 101. Jurf R.A., Pipes R.B.: Interlaminar Fracture of Composite Materials. J. of Composite Materials, vol. 16, Sept. 1982, s. 386-394.
  • 102. Kachanov L.M.: Delamination Buckling of Composite Materials. Kluwer Academic Publishers, Dordrecht 1988.
  • 103. Kaczanow L.M.: Razruszenije kompozitnych matieriałow putiem rasssłojenija. Miechanika Kompozitow, no. 5, 1976, s. 918-992.
  • 104. Kageyama K.: Characterisation of Mode II Interlaminar Crack Growth Based on Analytical Compliance Method. Proc. of the 7th ICCM, vol. 2, s. 535-540.
  • 105. Kanninen M.F.: An Augmented Double Cantilever Beam Model for Studding Crack Propagation and Arrest. Int. J. of Fracture, 9, 1973, s. 83-89.
  • 106. Kassapoglou C., Hammer J.: Design and Analysis of Composite Structures with Manufacturing Flaws. J. of the American Helicopter Society, October, 1990, s. 46-52.
  • 107. Kączkowski Z.: Płyty. Obliczenia statyczne, Arkady, Warszawa 1968.
  • 108. Khanh T.V., Langlois R.: Influence of Ply Orientation on the Measurement of Mode II Delamination. ICCM Proc. of the 7th Int. Conf. on Composite Materials, vol. 2, Guangzhou (China) 1989, s. 633-638.
  • 109. Kim H., Kedward K.T.: A Method for Modeling the Local and Global Buckling of Delaminated Composite Plates. Composite Structures, 44, 1999, s. 43-53.
  • 110. Kim B.W., Mayer A.H.: Influence of Fiber Direction and Mixed-mode Ratio on Delamination Fracture Toughness of Carbon/Epoxy Laminates. Composite Science and Technology, 63, 2003, s. 695-713 .
  • 111. Kinloch AJ., Wang Y., Williams J.G., Yayla P.: The Mixed-Mode Delamination of Fibre Composite Materials. Composite Science and Technology, 47, 1993, s. 225-237.
  • 112. Kocańda S.: Zmęczeniowe zniszczenie metali. WNT, Warszawa 1978.
  • 113. Komosa M., Hull D.: Mixed-mode Fracture of Composites Using Iosipescu Shear Test. Int. J. of Fracture, 35, 1987, s. 83-102.
  • 114. Konish H.J.: Mode I Stress Intensity Factors for Symmetrically-Cracked Orthotropic Strips. Fracture Mechanics of Composites. ASTM STP 593, 1975, s. 99-115.
  • 115. Konishi D.Y.: A Rational Approach to the Analysis of Delaminated Composite Plates. Composite Structures, 3, ed. J.H. Marshall, 1985, s. 383-401.
  • 116. Kotaki M., Hamada H.: Effect of Interfacial Properties and Weave Structure on Mode I Interlaminar Fracture Behaviour of Glass Satin Woven Fabric Composites. Composites Part A, 28A, 1997, s. 257-266.
  • 117. Krysicki W., Bartos J., Dyczka W., Królikowska K., Wasilewska M.: Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach. Część II. Statystyka matematyczna, PWN, Warszawa 1994.
  • 118. Kusaka T.K., Hojo M., Mai Y-W., Kurokawa T., Najima T., Ochiai S.: Rate Dependence of Mode I Fracture Behaviour in Carbon-fibre/Epoxy Composite Laminates. Composite Science and Technology, 58, 1998, s. 591-602.
  • 119. Laksimi A., Ahmed Benyahia A., Benzeggagh M.L., Gong X.L.: Initiation and bifurcation mechanisms of cracks in multi-directional laminates. Composite Science and Technology, 60, 2000, s. 597-604.
  • 120. Law G.E.: A Mixed Mode Fracture Analysis of (25/90n)s Graphite/epoxy Composite Laminates. Effects of Defects in Composite Materials. ASTM STP 836, American Society for Testing and Materials, 1984, s. 143-160.
  • 121. Lee Y.J., Lee C.H., Fu W.S.: Study on the Compressive Strength of Laminated Composite with Through-the-width Delamination. Composite Structures, 41, 1998, s. 229-241.
  • 122. Lewitowicz J., Kustroń K.: Podstawy eksploatacji statków powietrznych. Własności i właściwości eksploatacyjne statków powietrznych. Wyd. ITWL, Warszawa 2003.
  • 123. Li X., Carlssson L.A., Davis P.: Influence of Fiber Volume Fraction on Mode III Interlaminar Fracture Toughness of Glass/Epoxy Composites. Composite Science and Technology, 64, 2004, s. 1279-1286.
  • 124. Li J., Lee s. M., Lee E.W., O'Brien T.K.: Evaluation of the Edge Crack Torsion (ECT) Test for Mode III Interlaminar Fracture Toughness of Laminated Composites. J. of Composites Technology and Research, J., vol. 19, No 3, 1997, s. 174-183.
  • 125. Liao W.C., Sun C.T.: The Determination of Mode III Fracture Toughness in Thick Composite Laminates. Composite Science and Technology, 56, 1996, s. 489-499.
  • 126. Mall S., Law G.E., Katouzian M.: Loading Rate Effect on Interlaminar Fracture Toughness of Thermoplastic Composite. J. of Composite Materials, vol. 21, 1987, s. 569-579.
  • 127. Malyshev B.M., Salganik R.L.: The Strength of Adhesive Joints Using the Theory of Cracks. Int J. of Fracture Mechanics, vol. 1, No 2, 1965, s. 114-128.
  • 128. Martin R.H., Murri G.B.: Characterization of Mode I and Mode II Delamination Growth and Thresholds in AS4/PEEk Composites. Composite Materials: Testing and Design. ASTM STP 1059, ed. S.P. Garbo, American Society for Testing and Materials, Philadelphia 1990, s. 251-270.
  • 129. Martin R.H., Rousseau C.Q.: Characterizing Delamination Growth in a 0º/45º Interface. Composite Structures: Theory and Practice, ASTM STP 1383, Eds. P. Grant and C.Q. Rousseau, American Society for Testing and Materials, West Conshohocken, PA. 2000, s. 311-323.
  • 130. de Morais A.B., de Moura M.F., Goncalves J.P.M., Camanho P.P.: Analysis of Crack Propagation in Double Cantilever Beam Test of Multidirectional Laminates. Mechanics of Materials, 35, 2003, s. 641-652.
  • 131. Mottl J., Stachowiak. W.: Współczesne tendencje w badaniach nieniszczących. 22 Krajowa Konferencja Badań Nieniszczących, 1993, s. 53-60.
  • 132. Neimitz A.: Mechanika pękania. Wyd. Nauk. PWN, Warszawa 1998.
  • 133. Nicholls D.J., Gallagher J.P.: Determination of GIc in Angle Ply Composites Using a Cantilever Beam Test Method. J. of Reinforced Plastics and Composites, vol. 2, January 1983, s. 2-L7.
  • 134. O'Dowd N.P., Shih C.F., Stout M.G.: Test Geometries for Measuring Interfacial Fracture Toughness. Int. J. of Solids and Structures, vol. 29, No 5, 1992, s. 571-589.
  • 135. Ozdil F., Carlsson L.A.: Beam Analysis of Angle-ply Laminate DCB Specimens. Composite Science and Technology, 59, 1999, s. 305-315.
  • 136. Ozdil F., Carlsson L.A., Davies P.: Beam Analysis of Angle -ply Laminate End-notched Flexure Specimens. Composite Science and Technology, 58, 1998, s. 1929-1938.
  • 137. Pavier M.J., Chester T.: Compression Failure of Carbon Fibre-reinforced Coupons Containing Central Delamination. Composites, vol. 21, No 1, 1990, s. 23-31.
  • 138. Pereira A.B., de Morais A.B.: Mode I Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates. Composites Science and Technology, 64, 2004, s. 2261-2270.
  • 139 . Pereira A.B., de Morais A.B.: Mode II Interlaminar Fracture of Glass/Epoxy Multidirectional Laminates. Composites Part A, 35, 2004, s. 265-272.
  • 140. Pipes R.B., Pagano N.J.: Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension. J. of Composite Materials, 4, 1970, s. 538-548.
  • 141. Polaha J.J., Davidson B.D., Hudson R.C., Piera C.A.: Effects of Mode Ratio, Ply Orientation and Precracking on the Delamination Toughness of a Laminated Composite. J. of Reinforced Plastics and Composites, vol. 15, 1966, s. 141-173.
  • 142. Pruslow D.: Matrix fractography of fibre-reinforced thermoplastics. Part 2. Shear failures. Composites, vol. 19, No 2, 1988, s. 115-126.
  • 143. Pruslow D.: Fractography of Fibre-reinforced Thermoplastics. Part 3. Tensile, Compressive and Flexural Failures. Composites, vol. 19, No 5, 1988. s. 358-366.
  • 144. Pruslow D.: Matrix Fractography of Fibre-reinforced Thermoplastics. Part l. Peel Failures. Composites, vol. 18, No 5, 1987, s. 365-374.
  • 145. Pruslow D.: Matrix Fractography of Fibre-reinforced Epoxy Composites. Composites, vol. 17, No 4, 1986, s. 289-303.
  • 146. Pruslow D.: Some Fundamental Aspects of Composite Fractography. Composites, October 1981. s. 241-247.
  • 147. Raju I.S., Crews J.H., Aminpour M.A.: Convergence of Strain Energy Release Rate Components for Edge-Delaminated Composite Laminates. Engineering Fracture Mechanics, vol. 30, No 3, 1988, s. 383-396.
  • 148. Ramkumar R.L., Whitcomb J.D.: Characterisation of Mode I and Mixed-Mode Delamination Groth in T300/5208 Graphite/Epoxy. Delamination and Debonding of Materials. ASTM STP 876, ed. Johnson W.S., American Society for Testing and Materials, Philadelphia 1985, s. 315-335.
  • 149. Reeder J.R., Crews J.H.: Mixed Mode Bending Method for Delamination Testing. AIAA J., vol. 28, No 7, 1990, s. 1270-1276.
  • 150. Riccio A., Scaramuzzino F., Perugini P.: Embedded Delamination Growth in Composite Panels under Compressive Load. Composites Part B 32, 2001, s. 209-218.
  • 151. Rice J.R.: Elastic Fracture Mechanics Concept for Interfacial Cracks. J. of Applied Mechanics, Transaction of the ASME, vol. 55, March, 1988, s. 98-103.
  • 152. Rice J.R., Sih G.C.: Plane Problems of Cracks in Dissimilar Media. J. of Applied Mechanics, vol. 32, June, 1965, s. 418-423.
  • 153. Rice J.R., Suo Z., Wang J-S.: Mechanisms and Thermodynamics of Brittle Interfacial Failure in Bimaterial Systems. In: Metal-Ceramic Interfaces. Eds. M. Ruhle, A.G. Evans, M.F. Ashby, J.P. Hirth, Pergamon Press, New York 1990, s. 269-294.
  • 154. Robinson P., Song D.Q.: A Modified DCB Specimen for Mode I Testing of Multidirectional Laminates. J. of Composite Materials, vol. 26, No 11, 1992, s. 1554-1577.
  • 155. Rubbrecht Ph., Verpoest I.: The Development of Two New Test Methods to Determine the Mode I and Mode II Fracture Toughness for Varying Fibre Orientation at the Interface. 38th Int. SAMPE Symp., 1993, s. 875-887.
  • 156. Russell A.J.: Micromechanism of Interlaminar Fracture and Fatigue. Polymer Composites, vol. 8, No 5, 1987, s. 342-351.
  • 157. Russell A.J., Street K.N.: Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy. Delamination and Debonding of Materials. ASTM STP 876, ed.: W.S. Jonson, American Society for Testing and Materials, Philadelphia 1985, s. 349-370.
  • 158. Rybicki E.F., Kanninen M.F.: A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral. Engineering Fracture Mechanics, vol. 9, 1977, s. 931-938.
  • 159. Schapery R.A., Davidson B.D.: Prediction of Energy Release Rate for Mixed-Mode Delamination Using Classical Plate Theory. Applied Mechanics Review, vol. 43, No 5, Part 2, 1990, s. S261-S286.
  • 160. Seweryn A.: Numeryczne metody obliczania współczynników intensywności naprężeń. XVII Sympozjum Zmęczenia Materiałów i Konstrukcji, Bydgoszcz-Pieczyska 1998, s. 301-308.
  • 161. Sheinman I., Kardomateas G.A.: Energy Release Rate and Stress Intensity Factors for Delaminated Composite Laminates. Int. J. of Solids and Structures, vol. 34, No 4, 1997, s. 451-459.
  • 162. Sheinman I., Kardomateas G.A., Pelegri A.A.: Delamination Growth During Pre- and Post-buckling Phases of Delaminated Composite Laminates. Int. J. of Solids and Structures, vol. 35, Nos. 1-2, 1998, s. 19-31.
  • 163. Shen F., Lee K.H., Tay T.E.: Modeling Delamination Growth in Laminated Composites. Composite Science and Technology, 61, 2001, s. 1239-1251.
  • 164. Shen C-H, Springer G.S.: Moisture Absorbtion and Desorbtion of Composite Materials. J. Of Composite Materials, vol. 10, 1976, s. 2-20.
  • 165. Shi Y.B., Hull D., Price J.N.: Mode II Fracture of +9°/-9° Angled Laminate Interfaces. Composite Science and Technology, 47, 1993, s. 173-184.
  • 166. Shivakumar K.N., Whitcomb J.D.: Buckling of Sublaminate in a Quasi-Isotropic Composite Laminate. J. of Composite Materials, vol. 19, January 1985, s. 2-18.
  • 167. Short S.R.: Characterization of Interlaminar Shear Failures of Graphite/Epoxy Composite Materials. Composites, vol. 26, No 6, 1995, s. 431-449.
  • 168. Sih G.C., Paris P.C., Irwin G.R.: On Cracks in Rectilinearly Anisotropic Bodies. Int. J. of Fracture Mechanics, vol. 1, 1965, s. 189-203.
  • 169. Sih G.C., Rice J.R.: The Bending of Plates of Dissimilar Materials with Cracks. J. of Applied Mechanics, Transaction of the ASME, September 1964, s. 477-482.
  • 170. Slepetz JM., Carlson L.: Fracture of Composite Compact Tension Specimens. ASTM STP 593, 1975, s. 143-161.
  • 171. Smiley A.J., Pipes R.B.: Rate Effects on Mode I Interlaminar Fracture Toughness in Composite Materials. J. of Composite Materials, vol. 21, 1987, s. 670-687.
  • 172. Smith B.W., Grove R.A.: Determination of Crack Propagation Directions in Graphite/Epoxy Structures. Fractography of Modern Engineering Materials: Composites and Materials. ASTM STP 948, eds. J.E. Masters, J.J. Au, American Society for Testing and Materials, Philadelphia 1987, s. 154-173.
  • 173. Sorensen B.F., Jacobsen T.K.: Large-scale Bridging in Composites: R-curves and Bridging Laws. Composites, Part A 29A, 1998, s. 1443-1451.
  • 174. Sridharan S.: Displacement-based Mode Separation of Strain Energy Release Rates for Interfacial Cracks in Bi-material Media. Int. J. of Solids and Structures, 38, 2001, s. 6787-6803.
  • 175. Suemasu H.: An Experimental Method to Measure the Mode III Interlaminar Fracture Toughness of Composite Laminates. Composite Science and Technology, 59, 1999, s. 1015-1021.
  • 176. Sun C.T., Jih C.J.: On Strain Energy Release Rates for Interfacial Cracks in Bi-material Media. Engineering Fracture Mechanics, vol. 28, No 1, 1987, s. 13-20.
  • 177. Sun C.T., Manoharan M.G.: Strain Energy Release Rates of an Interfacial Crack Between two Orthotropic Solids. J. of Composite Materials, vol. 23, May 1989, s. 46Q-478.
  • 178. Sundararaman V., Davidson B.O.: New Test Methods for Determining Fracture Toughness as a Function of Mode Mix for Bimaterial Interfaces. Application of Fracture Mechanics in Electronic Packaging and Materials. ASME, EEP-vol. 11/MD-vol. 64, 1995, s. 141-154.
  • 179. Suo Z.: Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media. Proc. of the Royal Society A 427, 1990, s. 331-358.
  • 180. Suo Z.: Delamination Specimens for Orthotropic Materials. J. of Applied Mechanics, vol. 57, September 1990, s. 627-634.
  • 181. Suo Z., Bao G., Fan B.: Delamination R-curve Phenomena Due to Damage. J. of Mechanics and Physics of Solids, vol. 40, No 1, 1992, s. 1-16.
  • 182. Suo Z., Bao G., Fan B., Wang T.C.: Orthotropy Rescaling and Implications for Fracture in Composites. Int J. of Structures and Solids, vol. 28, No 2, 1991, s. 235-248.
  • 183. Suo Z., Hutchinson J.W.: Interface Crack Between Two Elastic Layers. Int J. of Fracture, 43, 1990, s. 1-18.
  • 184. Suo Z., Hutchinson J.W.: Sandwich Test Specimens for Measuring Interface Crack Toughness. Materials Science and Engineering, A 107, 1989, s. 135-143.
  • 185. Suppakul P., Bandyopadhyay S.: The Effect of Weave Pattern on the Mode-I Interlaminar Fracture Energy of E-glass/vinyl Ester Composites. Composite Science and Technology, 62, 2002, s. 709-717.
  • 186. Tamus V., Tarasovs S., Vilks U.: Progressive Delamination and Fiber Bridging Modelling in Double Cantilever Beam Composite Specimens. Engineering Fracture Mechanics, 68, 2001, s. 513-525.
  • 187. Thimoshenko S.: Strength of Materials. Van Nostrand Reinhold, New York 1978.
  • 188. Thoul ess M.D., Evans A.G., Ashby M.F., Hutchinson J.W.: The Edge Cracking and Spalling of Brittle Plates. Acta Metallica, No 6, 1987, s. 1333-1341
  • 189. Timoszenko S.P, Gere J.: Teoria stateczności sprężystej. Arkady, Warszawa 1961.
  • 190. Wang S.S.: Fracture Mechanics for Delamination Problems in Composite Materials. J. of Composite Materials, vol. 17, May 1983, s. 210-223.
  • 191. Wang Y., Williams J.G.: Correction for Mode II Fracture-toughness Specimens of Composite Materials. Composite Science and Technology. 43, 1992, s. 251-256.
  • 192. Wang Y., Zhao D.: Characterization of Interlaminar Fracture Behaviour of Woven Fabric Reinforced Polymeric Composites. Composites, vol. 26, 1995, s. 115-124.
  • 193. Wevars M., de Meester P.: Delamination Defects in CFRP Composites: High Frequency Ultrasonics to Visualise Third Dimension. Proc. of 9th Int. Conf. on Composite Materials, Composites,
  • Properties and Applications, Madrid 1993, s. 744-751.
  • 194. Whitcomb J.D.: Analysis of a Laminate with a Postbuckled Embedded Delamination, Including Contact Effects. J. of Composite Materials, vol. 26, No 10, 1992, s. 1523-1535.
  • 195. Whitcomb J.D.: Mechanics of Instability Related Delamination Growth. Composite Materials. Testing and Design. ASTM STP 1059, 1990, s. 215-230.
  • 196. Whitcomb J.D.: Finite Element Analysis of Instability Related Delamination Growth. J. of Composite Materials, vol. 15, 1981, s. 403-426.
  • 197. Whitcomb J.D., Shivakumar K.N.: Strain-Energy Release Rate Analysis of a Laminate with a Postbuckled Delamination. Numerical Methods in Fracture Mechanics. Proc. of the 4th Int. Conf., San Antonio (Texas) 1987, s. 581-605.
  • 198. Whitney J.M.: Interlaminar Fracture Characterisation of Composite Materials. Encyclopedia of Composites. VCH Publishers, 1989.
  • 199. Wilczyński A.P.: Polimerowe kompozyty włókniste. WNT, Warszawa 1996.
  • 200. Wilkins D.J., Eisenmann J.R., Camin R.A., Margolis W.S., Benson R.A.: Characterizing Delamination growth in Graphite-Epoxy. Damage in Composite Materials. ASTM STP 775, ed. K.L. Reifsnider, American Society for Testing and Materials, 1982, s. 168-183.
  • 201. Williams J.G.: The Fracture Mechanics of Delamination Test. J. of Strain Analysis, vol. 24, No 4, 1989, s. 207-214.
  • 202. Williams J.G.: Fracture of Polymers. Ellis Harwood, Chichester 1984.
  • 203. Williams J.G., Hadavinia H.: Elastic and Elasto-Plastic Correction Factors for DCB Specimens. In: ECF 14 Fracture Mechanics Beyond 2000. Ed. A. Neimitz, I.V. Rokach, D. Kocańda, K. Gołoś. Vol. III, EMAS Publishing, 2002, s. 573-592.
  • 204. Williams M.L.: The Stress Around a Fault or Crack in Dissimilar Media. Bulletin of the Seismological Society of America, vol. 49(2), 1959, s. 199-204.
  • 205. Wnuk M.P.: Podstawy mechaniki pękania. Skrypty uczelniane nr 585, Kraków 1977.
  • 206. Wspólne Przepisy Lotnicze JAR-VLA.
  • 207. Wu K-C.: Stress Intensity Factors and Energy Release Rate for Interfacial Cracks Between Dissimilar Anisotropic Materials. J. of Applied Mechanics, Translation of ASME, vol. 57, December 1990, s. 882-886.
  • 208. Xian X.J., Choy C.L.: The Interlaminar Fracture Behavior and Toughening Mechanisms of New Carbon Fibre-reinforced Bismaleimide Composites. Composites, vol. 26, No 1, 1995, s. 33-39.
  • 209. Xiao J., Li S.: On Mode IT Delamination Fracture Toughness of Multi-directional Interface in Composite Laminate. ICCM Proc. of the 7th Int. Conf. on Composite Materials, vol. 2, Guangzhou (China) 1989, s. 669-674.
  • 210. Yin W-L., Jane K.C.: Refined Buckling and Postbuckling Analysis of Two-dimensional Delaminations-II. Results for Anisotropic Laminates and Conclusion. Int. J. of Solids and Structures, vol. 29, No 5, 1992, s. 611-639.
  • 211. Yin W-L., Wang J.S.: The Energy-Release Rate in the Growth of a One-dimensional Delamination. J. of Applied Mechanics, vol. 51, 1984, s. 939-941.
  • 212. Yuuki R.: Mixed Mode Fracture Criteria for an Interface Crack. Engineering Fracture Mechanics, vol. 47, No 3, 1994, s. 367-377.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0018-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.