PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the notion of (gamma, s)-continuous functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 2002, Noiri and Jafari studied the notion of (0, s-continuous functions due to Thompson [Proc. Amer. Math. Soc. 60 (1976) 335-338]. In this paper, a new generalization of (0, s-continuity which is called (gamma, s)-continuity is introduced and studied. Furthermore, characterizations, basic properties, preservation theorems of (gamma,s)- continuous functions and relationships between (gamma, s)-continuous functions and the other types of functions are investigated and obtained.
Wydawca
Rocznik
Strony
715--727
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey
Bibliografia
  • [1] D. Andrevic, On b-open sets, Mat. Bech. 48 (1996) 59-64.
  • [2] S. P. Arya and M. P. Bhamini, Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math. 18 (1987) 1088-1093.
  • [3] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass 1996.
  • [4] D. E. Cameron and G. Woods, s-continuous and s-open mappings, Preprint.
  • [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
  • [6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat J. Math. Math. Sci. 19 (1996), 303-310.
  • [7] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar. 71 (1-2) (1996), 109-120.
  • [8] J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999), 139-146.
  • [9] A. A. El-Atik, A study of some types of mappings on topological spaces, Master's Thesis, Faculty of Science, Tanta University, Tanta, Egypt 1997.
  • [10] M. Ganster, On strongly s-regular spaces, Glasnik Mat. 25 (45) (1990), 195-201.
  • [11] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc. 80 (1980), 341-348.
  • [12] F. H. Khedr and T. Noiri, On θ-irresolute functions, Indian J. Math. 28 (1986), 211-217.
  • [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41. ·
  • [14] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El- Deeb, On precontinuous and weak precontinuous mappings, Proc. Phys. Soc. Egypt 53 (1982), 47-53.
  • [15] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965 ), 961-970.
  • [16] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15 (1984a), 241-250.
  • [17] T. Noiri, A note on S-closed spaces, Bull. Inst. Math. Acad. Sinica 12 (1984b), 229-235.
  • [18] T. Noiri, B. Ahmad and M. Khan, Almost s-continuous functions, Kyungpook Math. J. 35 (1995), 311-322.
  • [19] T. Noiri and S. Jafari, Properties of (θ,s)-continuous functions, Topology Appl. 123 (2002), 167-179.
  • [20] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, in: General Topology and its Relation to Modern Analysis and Algebra, III, Proc. Conf. Kanpur, 1968, Academia, Prague 1971, pp. 301-306.
  • [21] L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Holt, Rinerhart and Winston, New York 1970.
  • [22] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS 41 (1937) 375-381.
  • [23] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976) 335-338.
  • [24] G. J. Wang, On S-closed spaces, Acta Math. Sinica 24 (1981), 55-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0014-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.