PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the maxima of two functions which are simultaneously unilaterally approximately continuous and approximately regulated

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we investigate the maxima of two unilaterally approximately continuous and approximately regulated functions. In particular we prove that if / is the maximum of two unilaterally approximately continuous and approximately regulated functions then for each x is an element of Dunap(f) = {x : f is not unilaterally approximately continuous at x} the inequality f(x) < max(fap(x+),fap(x-)) holds. Moreover, we show some condition ensuring that an approximately regulated function f such that Dap(f) is countable and for each x is an element of Dunap(f) the inequality f(x) < max(fap(x+),fap(x-)) holds, is the maximum of two unilaterally approximately continuous and approximately regulated functions.
Wydawca
Rocznik
Strony
523--531
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
  • Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
Bibliografia
  • [1] A. M. Bruckner, Differentiation of Real Functions, Lectures Notes in Mathematics 659, Springer-Verlag, Berlin Heidelberg New York 1978.
  • [2] M. Grande, On the sums of unilaterally approximately continuous and approximate jump functions, Real Analysis Exchange Vol. 28(2), 2002/2003, pp. 1-8.
  • [3] M. Grande, On the maximums of unilaterally continuous regulated functions, accepted to Real Analysis Exchange Vol. 29(2), 2004.
  • [4] C. S. Reed, Pointwise limits of sequences of functions, Fundamenta Math. 67 (1970), 183-193.
  • [5] R. Sikorski, Funkcje Rzeczywiste I, Warszawa 1958 (in Polish).
  • [6] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.