Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A paraconcave entropy function [2] is represented by a pair of two real functions of a real variable satisfying certain natural conditions. The subject of this paper is the functional equation, L(sum j f(pj)) = sum j g(pj)i, that describes equivalence between two representations of a paraconcave entropy function with concave functions f and g satisfying the condition for a bounded entropy. With the use of E-transforms of the functions f and g we reduce the problem of solvability of the equation to the problem ofinjectivity of a certain nonlinear operator denned on the set of concave homeomorphisms of the interval [0,1] onto itself. Additionally, we prove some facts about concavity of the E-transform f.
Wydawca
Czasopismo
Rocznik
Tom
Strony
401--411
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Pl. Politechniki 1, 00-661 Warsaw, Poland
Bibliografia
- [1] J. Aczel and Z. Daroczy, On Measures of Information and Their Characterizations, Academic Press, New York, San Francisco, London 1975.
- [2] M. Behara and Z. Dudek, On paraconcave entropy functions, Information Sciences (INS) 64 (1,2), 1992.
- [3] Z. Daroczy, Generalized information functions, Information and Control 16, 1, (1970) 36-51.
- [4] Z. Dudek, On the functional equation associated with unbounded complete paraconcave entropies, Demonstratio Math. 34 (2001), 641-650.
- [5] B. Forte, Derivation of a class of entropies including those of degree β*, Information and Control 28 (1975) , 335-351.
- [6] L. Losonczi, A characterization of entropies of degree α, Metrika (1981), 237-244.
- [7] H. L. Royden, Real Analysis, Macmillan, New York, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0013-0013