Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the nonlinear even-order boundary value problem u(2n)(x)=f(x, u(x)), x is an element of [0,l], u(2k)(0)=u(2k)(1)=0, 0
Wydawca
Czasopismo
Rocznik
Tom
Strony
331--340
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Universitatea Babeș-Bolyai, Facultatea de Matematică şi Informatică, Str. Kogălniceanu 1, 3400 Cluj-Napoca, Romania
Bibliografia
- [1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415-426.
- [2] Z. Bai, The method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. Appl. 248 (2000), 195-202.
- [3] Z. Bai, H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl. 270 (2002), 357-368.
- [4] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal. 26 (1988), 289-304.
- [5] C. P. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl. 135 (1988), 208-225.
- [6] C. P. Gupta, Existence and uniqueness theorems for some fourth-order fully quasilinear boundary value problems, Appl. Anal. 36 (1990), 157-169.
- [7] M. Lees, Discrete Methods for Nonlinear Two-Point Boundary Value Problems, Numerical Solutions of Partial Differential Equations, J. H. Bramble (editor), Academic Press, New York, 1966, 59-72.
- [8] Y. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl. 281 (2003), 477-484.
- [9] R. Ma, J. Zhang, S. Fu, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl. 215 (1997), 415-422.
- [10] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, 1970.
- [11] M. A. del Pino, R. F. Manásevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991 ), 81-86.
- [12] M. Rădulescu, S. Rădulescu, An application of a global inversion theorem to a Dirichlet problem for a second order differential equation, Rev. Roumaine Math. Pures Appl. 37 (1992), 929-933.
- [13] J. Tippett, An existence-uniqueness theorem for two-point boundary value problems, SIAM J. Math. Anal. 5 (1974), 153-157.
- [14] T. Trif, An existence uniqueness theorem for an integral equation modelling infectious diseases, Studia Univ. Babeş-Bolyai, Math. 47, no. 2 (2002), 73-81.
- [15] R. A. Usmani, A uniqueness theorem for a boundary value problem, Proc. Amer. Math. Soc. 77 (1979), 329-335.
- [16] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104 (1988), 175-180.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0013-0008