Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Classical solutions of nonlinear initial boundary value problems are approximated in the paper by solutions of suitable quasilinear differential difference systems. The proof of the stability of the method of lines is based on a comparison technique with nonlinear estimates of the Perron type. Numerical examples are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
239--254
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Gdańsk University of Technology, Department of Differential Equations, 11-12 Gabriel Narutowicz Street, 80-952 Gdańsk, Poland
Bibliografia
- [1] P. Brandi, Z. Kamont, A. Salvadori, Approximate solutions of mixed problems for first order partial differential functional equations, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 277-302.
- [2] M. Cinquini Cibrario, Nuove richerche sui sistemi di equazioni nonlineari a derivate parziali in piu variabli indipendenti, Rend. Sem. Mat. Fis. Univ. Modena 52 (1982), 531-550.
- [3] M. Cinquini Cibrario, Sopra una classe di sistemi di equazioni nonlineari a derivate parziali in piu variabli indipendenti, Ann. Mat. Pura et Appl. 140 (1985), 223-253.
- [4] D. Jaruszewska-Walczak, Z. Kamont, Existence of solutions of first order partial differential functional equations via the method of lines, Serdica Bulg. Math. Publ. 16 (1990), 104-114.
- [5] Z. Kamont, S. Zacharek, The lines method for parabolic differential functional equations with initial boundary conditions of Dirichlet type, Atti. Sem. Mat. Fis. Univ. Modena 35 (1987), 249-262.
- [6] Z. Kamont, Hyperbolic Fuctional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, Boston, London, 1999.
- [7] S. Łojasiewicz, Sur problèmes de Cauchy pour les systèmes d'équations aux dérivées partielles du premier ordre dans le cas hyperbolique de deux variables indépendantes, Ann. Polon. Math. 3 (1956), 87-117.
- [8] K. Schmit, R. Thompson and W. Walter, Existence of solutions of a nonlinear boundary value problem via method of lines, Nonlin. Anal., TMA (1978), 519-535.
- [9] W. Walter, Existence and convergence theorems for the boundary layer equation based on the line method, Arch. Rat. Mech. Anal. 39 (1970), 169-188.
- [10] Wei Dongming, Existence, uniqueness and numerical analysis of solutions of a quasilinear parabolic problem, SIAM J. Numer. Anal. 29 (1992), 484-497.
- [11] A. V. Wouwer, Ph. Saucez, W. E. Schiesser, Adaptive Method of Lines, Boca Raton-London, Chapman and Hall/CRC, 2001.
- [12] S. Yuan, The Finite Element Method of Lines, Beijing, Science Press, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0012-0025