Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we consider the right invertibility problem of some linear operators defined on the algebra of smooth function on a differential space.
Wydawca
Czasopismo
Rocznik
Tom
Strony
905--920
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
- [1] N. Aronszajn, Subcartesian and subriemannian spaces, Notices Amer. Math. Soc. 14 (1967), 111.
- [2] N. Aronszajn, F. Szeptycki, Theory of Bessel potentials, Part IV, Ann. Inst. Fourier 25 (1979), 27-67.
- [3] K.T. Chen, Iterated path integrals, Bulletin of AMS, vol. 8, No 5 (1977), 115-137.
- [4] A. Frölicher, A. Kriegl, Linear Spaces and Differentiation Theory, J. Wiley and Sons, Chichester (1988).
- [5] Ch. D. Marshall, Calculus on subcartesian spaces, J. Diff. Geom. 10 (1977), 115-137.
- [6] M. A. Mostov, The differentiable space structures of Milnor clasifying spaces, Simplicial Complexes and Geometric Relations, J. Diff. Geom. 14 (1979), 255-293.
- [7] I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. 42 (1956), 359-363.
- [8] K. Spallek, Differenzierbare Raume, Math. Ann. 180 (1969), 269-296.
- [9] K. Spallek, Zur Klassifikation differenzierbarer Gruppen, Manuscripta Math. 11 (1974), 45-79.
- [10] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
- [11] R. Sikorski, Differential modules, Colloq. Math. 24 (1971), 45-70.
- [12] R. Sikorski, An Introduction to Differential Geometry, PWN, Warszawa 1972, in Polish.
- [13] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
- [14] D. Przeworska-Rolewicz, Algebraic theory of right invertible operators, Studia Math. 48 (1973), 129-144.
- [15] D. Przeworska-Rolewicz, Right invertible operators and functional-differential equations with involutions, Demonstratio Math. 5 (1973).
- [16] D. Przeworska-Rolewicz, Introduction to Algebraic Analysis and its Applications, WNT, Warszawa 1979, in Polish.
- [17] D. Przeworska-Rolewicz, Logarithms and Antilogarithms, An Algebraic Analysis Approach, Kluwer Academic Publishers, Dordrecht 1998.
- [18] B. Mażbic-Kulma, Differential equations in differential spaces, Studia Math. 39 (1971), 157-161.
- [19] G. Virsik, Right inverses of vector fields, J. Austral. Math. Soc. (Series A) 58 (1995), 411-420.
- [20] W. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York, Berlin 1983.
- [21] Z. Pasternak-Winiarski, Differential groups of class Do and standard charts, Demonstratio Math. 2 (1983), 503-517.
- [22] W. Sasin, Infinite cartesian product of differential groups, Math. Nachr. 149 (1990), 61-70.
- [23] M. Heller, Algebraic foundations of the theory of differential spaces, Demonstratio Math. 24 (1991), 349-364.
- [24] P. Multarzyński, W. Sasin, On the dimension of differential spaces, Demonstratio Math. 23 (1990), 405-415.
- [25] P. Multarzyński, W. Sasin, Algebraic characterization of the dimension of differential spaces, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Ser. II No 22 (1989), 193-199.
- [26] P. Multarzyński, W. Sasin, Z. Żekanowski, Vectors and vector fields of k-th order, Demonstratio Math. 24 (1991), 557-572.
- [27] P. Multarzyński, Z. Żekanowski, On general Hamiltonian dynamical systems in differential spaces, Demonstratio Math. 24 (1991), 539-555.
- [28] P. Multarzyński, Whitney topology and the structural stability of smooth mappings in differential spaces, Demonstratio Math. 24 (1991), 495-514.
- [29] P. Multarzyński, Z. Pasternak-Winiarski, Differential groups and their Lie algebras, Demonstratio Math., 24 (1991), 515-537.
- [30] J. Gruszczak, M. Heller, P. Multarzyński, A Generalization of manifolds as space-time models, J. Math. Phys. 29 (1988), 2576-2580.
- [31] J. Gruszczak, M. Heller, P. Multarzyński, Physics with and without the equivalence principle, Found. Phys. 19 (1989), 607-618.
- [32] P. Multarzyński, M. Heller, The differential and cone structures of space-time, Found. Phys. 21 (1990), 1005-1015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0011-0021