PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On some right invertible operators in differential spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the right invertibility problem of some linear operators defined on the algebra of smooth function on a differential space.
Wydawca
Rocznik
Strony
905--920
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
  • [1] N. Aronszajn, Subcartesian and subriemannian spaces, Notices Amer. Math. Soc. 14 (1967), 111.
  • [2] N. Aronszajn, F. Szeptycki, Theory of Bessel potentials, Part IV, Ann. Inst. Fourier 25 (1979), 27-67.
  • [3] K.T. Chen, Iterated path integrals, Bulletin of AMS, vol. 8, No 5 (1977), 115-137.
  • [4] A. Frölicher, A. Kriegl, Linear Spaces and Differentiation Theory, J. Wiley and Sons, Chichester (1988).
  • [5] Ch. D. Marshall, Calculus on subcartesian spaces, J. Diff. Geom. 10 (1977), 115-137.
  • [6] M. A. Mostov, The differentiable space structures of Milnor clasifying spaces, Simplicial Complexes and Geometric Relations, J. Diff. Geom. 14 (1979), 255-293.
  • [7] I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. 42 (1956), 359-363.
  • [8] K. Spallek, Differenzierbare Raume, Math. Ann. 180 (1969), 269-296.
  • [9] K. Spallek, Zur Klassifikation differenzierbarer Gruppen, Manuscripta Math. 11 (1974), 45-79.
  • [10] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
  • [11] R. Sikorski, Differential modules, Colloq. Math. 24 (1971), 45-70.
  • [12] R. Sikorski, An Introduction to Differential Geometry, PWN, Warszawa 1972, in Polish.
  • [13] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
  • [14] D. Przeworska-Rolewicz, Algebraic theory of right invertible operators, Studia Math. 48 (1973), 129-144.
  • [15] D. Przeworska-Rolewicz, Right invertible operators and functional-differential equations with involutions, Demonstratio Math. 5 (1973).
  • [16] D. Przeworska-Rolewicz, Introduction to Algebraic Analysis and its Applications, WNT, Warszawa 1979, in Polish.
  • [17] D. Przeworska-Rolewicz, Logarithms and Antilogarithms, An Algebraic Analysis Approach, Kluwer Academic Publishers, Dordrecht 1998.
  • [18] B. Mażbic-Kulma, Differential equations in differential spaces, Studia Math. 39 (1971), 157-161.
  • [19] G. Virsik, Right inverses of vector fields, J. Austral. Math. Soc. (Series A) 58 (1995), 411-420.
  • [20] W. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York, Berlin 1983.
  • [21] Z. Pasternak-Winiarski, Differential groups of class Do and standard charts, Demonstratio Math. 2 (1983), 503-517.
  • [22] W. Sasin, Infinite cartesian product of differential groups, Math. Nachr. 149 (1990), 61-70.
  • [23] M. Heller, Algebraic foundations of the theory of differential spaces, Demonstratio Math. 24 (1991), 349-364.
  • [24] P. Multarzyński, W. Sasin, On the dimension of differential spaces, Demonstratio Math. 23 (1990), 405-415.
  • [25] P. Multarzyński, W. Sasin, Algebraic characterization of the dimension of differential spaces, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Ser. II No 22 (1989), 193-199.
  • [26] P. Multarzyński, W. Sasin, Z. Żekanowski, Vectors and vector fields of k-th order, Demonstratio Math. 24 (1991), 557-572.
  • [27] P. Multarzyński, Z. Żekanowski, On general Hamiltonian dynamical systems in differential spaces, Demonstratio Math. 24 (1991), 539-555.
  • [28] P. Multarzyński, Whitney topology and the structural stability of smooth mappings in differential spaces, Demonstratio Math. 24 (1991), 495-514.
  • [29] P. Multarzyński, Z. Pasternak-Winiarski, Differential groups and their Lie algebras, Demonstratio Math., 24 (1991), 515-537.
  • [30] J. Gruszczak, M. Heller, P. Multarzyński, A Generalization of manifolds as space-time models, J. Math. Phys. 29 (1988), 2576-2580.
  • [31] J. Gruszczak, M. Heller, P. Multarzyński, Physics with and without the equivalence principle, Found. Phys. 19 (1989), 607-618.
  • [32] P. Multarzyński, M. Heller, The differential and cone structures of space-time, Found. Phys. 21 (1990), 1005-1015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0011-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.