Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wydawca
Czasopismo
Rocznik
Tom
Strony
709--717
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Mathematics, Jagiellonian University, Reymonta 4 Kraków, Poland
Bibliografia
- [1] M. Doupovec , I. Kolář, Natural affinors on time-dependent Weil bundles, Arch. Math. Brno 27(1991), 205-209.
- [2] J. Gancarzewicz , I. Kolář, Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95-100.
- [3] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin 1993.
- [4] I. Kolář, W. M. Mikulski, Contact elements on fibered manifolds, Czech Math. J. 53 (128) (2003), 1017-1030.
- [5] I. Kolář, M. Modugno, Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1-16.
- [6] J. Kurek, Natural affinors on higher order cotangent bundles, Arch. Math. Brno (28) (1992), 175-180.
- [7] M. Kureš, W. M. Mikulski, Natural operations lifting vector fields to bundles of Weil contact elements, Czech. Math. J., to appear.
- [8] W. M. Mikulski, Natural affinors on r-jet prolongation of the tangent bundles, Arch. Math. Brno 34 (2)(1998), 321-328.
- [9] W. M. Mikulski, Natural affinors on (JʳT*)*, Arch. Math. Brno 36 (2000), 261-267.
- [10] W. M. Mikulski, The natural affinors on [wzór], Note di Matematica 19 (2) (1999), 269-274.
- [11] W. M. Mikulski, The natural affinors on generalized higher order tangent bundles, Rend. Mat. Appl. Roma VII 21(2001), 339-349.
- [13] W. M. Mikulski, Natural affinors on [wzór], Comment. Math. Univ. Carolinae 42,4 (2001), 655-663.
- [14] W. M. Mikulski, The natural affinors on [wzór], Acta Univ. Palack. Olomuc., Fac. Rerum. Natur., Mathematica 40 (2001), 179-184.
- [15] W. M. Mikulski, Natural operators lifting linear vector fields from a vector bundle into its r-jet prolongations, Ann. Polon. Math. 82.2. (2003), 155-170.
- [16] W. M. Mikulski, On the fiber product preserving gauge bundle functors on vector bundles, Colloq. Math. 82.3 (2003), 251-264.
- [17] J. Tomáš, Natural operators transforming projectable vector fields to product preserving bundles, Suppl. Rend. Circ. Mat. Palermo II (59) (1999), 181-187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0011-0007