Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wydawca
Czasopismo
Rocznik
Tom
Strony
159--175
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
Bibliografia
- [1] J. Appell, P.P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Vol. 95, Cambridge University Press, Cambridge 1990.
- [2] V.K. Bhardwaj, N. Singh, Some sequence spaces defined by Orlicz functions, Demonstratio Math. 33 (2000), 571-582.
- [3] T.S. Chew, Superposition operators on w₀ and W₀, Comment. Math. Prace Mat. 29 (1990), 149-153.
- [4] T.S. Chew, P.Y. Lee, Orthogonally additive operators on sequence spaces, Southeast Asian Bull. Math. 17 (1993), 81-85.
- [5] B. Choudhary, A note on boundedness of superposition operators on sequence spaces, J. Analysis 8 (2000), 55-64.
- [6] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
- [7] F. Dedagich, P.P. Zabreĭko, On superposition operators in ℓp spaces, Sibirsk. Mat. Zh. 28 (1987), 86-98 (in Russian).
- [8] Encyclopaedia of Mathematics, Vol. 1, edited by M. Hazewinkel, Kluwer Academic Publishers, Dordrecht 1995.
- [9] A. Esi, Some new sequence spaces defined by Orlicz functions, Bull. Inst. Math. Acad. Sinica 27 (1999), 71-76.
- [10] D. Ghosh, P.D. Srivastava, On some vector valued sequence space using Orlicz function, Glas. Mat. 34 (1999), 253-261.
- [11] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-302.
- [12] E. Kolk, Sequence spaces defined by a sequence of moduli, in: Abstracts of conference "Problems of Pure and Applied Mathematics", Tartu (1990), 131-134.
- [13] E. Kolk, On strong boundedness and summability with respect to a sequence of moduli, Tartu Ül. Toimetised 960 (1993), 41-50.
- [14] E. Kolk, F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547-1566.
- [15] E. Kolk, On sequence spaces defined by a regularly varying modulus, Acta Comment. Univ. Tartuensis Math. 4 (2000), 11-15.
- [16] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihre Grenzgebiete, Vol. 92, Springer-Verlag, Berlin-New York 1977.
- [17] Y. Luh, Die Rāume ℓ(p), ℓ∞(p), c(p), c₀(p), w(p), w₀(p) und w∞(p), Mitt. Math. Sem. Giessen 180 (1987), 35-57.
- [18] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166.
- [19] E. Malkowsky, E. Savas, Some λ-sequence spaces defined by a modulus, Arch. Math. (Brno) 36 (2000), 219-228.
- [20] J. Musielak, Orlicz Spaces and Modular Spaces , Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1983.
- [21] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211.
- [22] S.D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428.
- [23] S. Pehlivan, B. Fisher, Some sequence spaces defined by a modulus, Math. Slovaca 45 (1995), 275-280.
- [24] S. Petranuarat, Y. Kemprasit, Superposition operators of ℓp and c₀ into ℓq (1 ≤ p, q < ∞) , Southeast Asian Bull. Math. 21 (1997), 139-147.
- [25] R. Płuciennik, Continuity of superposition operators on w₀ and W₀, Comment. Math. Univ. Carolinae 31 (1990), 529-542.
- [26] R. Płuciennik, Roundedness of superposition operators on w₀, Southeast Asian Bull. Math. 15 (1991), 145-151.
- [27] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1913), 973-978.
- [28] V. Soomer, On sequence spaces defined by a sequence of moduli and an extension of Kuttner's theorem, Acta Comment. Univ. Tartuensis Math. 2 (1998), 29-38.
- [29] I.V. Šragin, Conditions for the imbedding of classes of sequences, and their consequences, Mat. Zametki 20 (1976), 681-692 (in Russian).
- [30] S. Suantai, Boundedness of superposition operators on Er and Fr, Comment Math. Prace Mat. 37 (1997), 249- 259.
- [31] S. D. Unoningsih, R. Płuciennik, L.P. Yee, Boundedness of superposition operators on sequence spaces, Comment. Math. Prace Mat. 35 (1995), 209-216.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0009-0024