PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical approximation for periodic functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study a Korovkin type approximation theorem for positive linear operators on the space of all 2π-periodic and continuous functions on the whole real axis via A-statistical convergence.
Wydawca
Rocznik
Strony
873--878
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Ankara University, Faculty of Science, Department of Mathematics, Tandoğan 06100, Ankara, Turkey
Bibliografia
  • [1] F. Altomare, M. Campiti, Korovkin Type Approximation Theory and Its Application, Walter de Gruyter Publ. Berlin, 1994.
  • [2] R. Bojanic, F. Cheng, Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejér polynomials, Proceedings of the conference of Canadian Math. Soc. 3 (1983), 5-17.
  • [3] R. Bojanic, M. K. Khan, Summability of Hermite-Fejér interpolation for functions of bounded variation, J. Nat. Sci. Math. 32 No. 1 (1992), 5-10.
  • [4] E. W. Cheney, Introduction to Approximation Theory, AMS Chelsea Publishing, 2000.
  • [5] R. A. Devore, The Approximation of Continuous Functions by Positive Linear Operators,Lecture Notes in Mathematics, Springer-Verlag, 293 (1972), Berlin.
  • [6] J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
  • [7] J. S. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis 8 (1988), 47-63.
  • [8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [9] A. R. Freedman, J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
  • [10] J. A. Fridy, On statistitical convergence, Analysis 5 (1985), 301-313.
  • [11] J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66.
  • [12] J. A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
  • [13] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), 129-138.
  • [14] G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.
  • [15] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77-83.
  • [16] P. P. Korovkin, Linear Operators and The Theory of Approximation, India, Delhi, 1960.
  • [17] B. Kuttner, On the Gibbs phenomenon for Riesz means, J. London Math. Soc. 19 (1944), 153-161.
  • [18] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811-1819.
  • [19] H. I. Miller, C. Orhan, On almost convergent and statistically convergent subsequences, Acta. Math. Hungar. 93 (1-2) (2001), 135-151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0008-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.