PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On residually integrally closed domains

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A domain R is called residually integrally closed if R/p is an integrally closed domain for each prime ideal p of R. We show that residually integrally closed domains satisfy some chain conditions on prime ideals. We give characterization of such domains in case they contain a field of characteristic 0. Section 3 deals with domains R such that R/p is a unique factorization domain for each prime ideal p of R, these domains are showed to be PID. We also prove that domains R such that R/p is a regular domain are exactly Dedekind domains
Wydawca
Rocznik
Strony
543--550
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Sciences of Tunis, University Tunis El Manar, "Campus Universitaire", 1060 Tunis, Tunisia
autor
  • Faculty of Sciences of Sfax, Department of Mathematics, BP 802, 3018 Sfax, Tunisia
Bibliografia
  • [1] M. Auslander, D. Buchsbaum, Unique factorization in regular local rings, Proc. Natl. Acad. Sci. USA 45 (1959), 733-734.
  • [2] D. F. Anderson, D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math. 32 (1980), 362-384.
  • [3] P.-J. Cahen, Couples d'anneaux partageant un idéal, Arch. Math. 51 (1988), 505-514.
  • [4] A. M. De Souza Doering, Y. Lequain, Chains of prime ideals in polynomial rings, J. Algebra. 78 (1982), 163-180.
  • [5] J. R. Hedstrom, E. G. Houston, Pseudo-valuation domains, Pacific. J. Math. 75 (1978), 137-147.
  • [6] E. G. Houston, M. Mcadam, Chains of primes in Noetherian rings, Indiana. Univ. Math. J. 24 (1975), 741-753.
  • [7] I. Kaplansky, Commutative Rings (Revised Edition), The University of Chicago Press, 1974.
  • [8] H. Matsumura, Commutative Algebra, Mathematics Lecture Note Series, Second Edition, 1980.
  • [9] S. Mcadam, Going down, Duke Math. J. 39 (1972), 633-636.
  • [10] S. Mcadam, Strongly cornaximizable primes, J. Algebra 170 (1994), 206-228.
  • [11] S. Mcadam, Shah, Lifting chains of primes to integral extensions, J. Algebra 185 (1996), 162-174.
  • [12] S. Mcadam, Shah, Substructures of Spec(R[X]), J. Algebra 188 (1997), 184-202.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0007-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.