Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Motivated by the use of fuzzy or unsharp quantum logics as carriers of probability measures there have been recently introduced effect algebras (D-posets). We extend a result by Greechie, Foulis and Pulmannova of finite distributive effect algebras to all Archimedean atomic distributive effect algebras. We show that every such an effect algebra is join and meet dense in a complete effect algebra being a direct product of finite chains and distributive diamonds. This proves that every such effect algebra has a MacNeille completion being again a distributive effect algebra and both these effect algebras are continuous lattices. Moreover, we show that every faithful or (o)-continuous state (probability) on such an effect algebra is a valuation, hence a subadditive state. Its existence is also proved. Finally, we prove that every complete atomic distributive effect algebra E is a homomorphic image of a complete modular atomic ortholattice regarded as effect algebra and E is an MV-effect algebra (MV-algebra) if and only if it is a homomorphic image of a Boolean algebra regarded as effect algebra.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
247--259
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava 1, Slovak Republic
Bibliografia
- [1] C. C. Chang, Algebraic analysis of many-valued, logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
- [2] R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
- [3] A. Dvurečenskij, S. Pulmannová, New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, Boston, London and Ister Science, Bratislava, 2000.
- [4] D. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352.
- [5] G. Grätzer, Universal Algebra, second edition, Springer Verlag, New York, Heidelberg, Berlin, 1968, 1979.
- [6] R. J. Greechie, D. Foulis, S. Pulmannová, The center of an effect algebra, Order 12 (1995), 91-106.
- [7] P. Hájek, Mathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [8] U. Höhle and E. P. Klement (eds.), Non-classical Logics and their Applications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
- [9] G. Jenča, Z. Riečanová, On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24-29.
- [10] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983.
- [11] F. Kôpka, D-posets of fuzzy sets, Tatra Mt. Math. Publ. 1 (1992), 83-87.
- [12] F. Kôpka, F. Chovanec, Boolean D-posets, Internat. J. Theor. Phys. 34 (1995), 1297-1302.
- [13] Z. Riečanová, Subalgebras, intervals and central elements of generalized effect algebras Internat. J. Theor. Phys. 38 (1999), 3209-3220.
- [14] Z. Riečanová, Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. 16 (1999), 151-158.
- [15] Z. Riečanová, MacNeille completions of D-posets and effect algebras, Internat. J. Theor. Phys. 39 (2000), 859-869.
- [16] Z. Riečanová, Continuous lattice effect algebras admitting order-continuous states, Fuzzy Sets and Systems, to appear, preprint, www.elf.stuba.sk/~jenca/preprint/index.htm.
- [17] Z. Riečanová, Generalization of blocks for D-lattices and lattice ordered effect algebras, Internat. J. Theor. Phys. 39 (2000), 231-237.
- [18] Z. Riečanová, Sharp elements in effect algebras, Internat. J. Theor. Phys. 40 (2001), 913-920.
- [19] Z. Riečanová, Proper effect algebras admitting no states, Internat. J. Theor. Phys. 40 (2001), 1683-1691.
- [20] Z. Riečanová, Lattice effect algebras with (o)-continuous faithful valuations, Fuzzy Sets and Systems 124 (2001), 321-3271.
- [21] Z. Riečanová, Smearings of states defined on sharp elements onto effect algebras, Internat. J. Theor. Phys. 41 (2002), 1511-1524.
- [22] J. Schmidt, Zur Kennzeichnung der Dedekind-Mac Neilleschen Hulle einer Geordneten Menge, Archiv d. Math. 7 (1956), 241-249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0007-0001