Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let r : F - > N be a type of algebras F is a nonempty set of fundamental operation symbols and N is the set of all positive integers. An identity ip fa if) of type T we call left-outermost if the left-outermost variables in ip and ip are the same. For a variety V of type r we denote by Vi the variety of type r defined by all left-outermost identities from Id(V). Vl is called the left-outermost extension of V. In this paper we study minimal generics, subdirectly irreducible algebras and lattices of subvarieties in left-outermost extensions of some generalizations of the variety D of all distributive lattices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
37--51
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Mathematical Institute, The Polish Academy Sciences, Kopernika 18, 51-617 Wrocław, Poland
Bibliografia
- [1] R. Balbes, A representation theorem for distributive quasilattices, Fundamenta Math. 68 (1970), 207-214.
- [2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981.
- [3] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335.
- [4] W. Chromik, On varieties of algebras defined by first regular identities, Demonstratio Math. 22 (1989), No 3, 573-581.
- [5] W. Dudek and E. Graczyńska, The lattice of varieties of algebras, Bull. Acad. Pol. Sci. (Ser. Math.) 29 (1981), No. 7-8, 337-340.
- [6] E. Graczyńska, On normal and regular identities and hyperidentities, in: Universal and Applied Algebra (eds. K. Halkowska, B. Stawski), World Scientific, 1989, 107-135.
- [7] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990), 387-397.
- [8] G. Grätzer, Universal algebra, second edition, Springer-Verlag, New York 1979.
- [9] G. Grätzer, H. Lakser and J. Płonka, Joins and direct products of equational classes, Canad. Math. Bull. 12 (1969), 741-744.
- [10] R. John, On classes of algebras definable by regular equations, Colloq. Math. 36 (1976), 17-21.
- [11] B. Jónsson and E. Nelson, Relatively free products in regular varieties, Algebra Universalis 4 (1974), 14-19.
- [12] H. Lakser, R. Padmanabhan and C. R. Platt, Subdirect decomposition of Płonka sums, Duke Math. J. 39 (1972), 485-488.
- [13] J. Płonka, On a method of construction of abstract algebras, Fundamenta Math. 61 (1967), 183-189.
- [14] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fundamenta Math. 64 (1969), 241-247.
- [15] J. Płonka, Biregular and uniform identities of bisemilattices, Demonstratio Math. 20 (1987), 95-107.
- [16] J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. Math. 14 (1988), 253-263.
- [17] J. Płonka, Biregular and uniform identities of algebras, Czechoslovak Math. J. 20 (115) (1990), 367-387.
- [18] J. Płonka, Clone compatible identities and clone extensions of algebras, Math. Slovaca 47 (1997), No. 3, 231-249.
- [19] J. Płonka, On n-clone extensions of algebras, Algebra Universalis 40 (1998), 1-17.
- [20] J. Płonka, Subdirect decompositions of algebras from 2-clone extensions of varieties, Colloq. Math. 77 (1998), No. 2, 189-199.
- [21] J. Płonka, Lattices of subvarieties of the clone extensions of some varieties, in: Contributions to General Algebra 11, Verlag Johannes Heyn, Klagenfurt 1999, 161-171.
- [22] J. Płonka, Clone networks, clone extensions and biregularizations of varieties of algebras, Algebra Colloquium 8 (2001), No. 3, 327-344.
- [23] J. Płonka, Minimal characteristic algebras for some properties of identites, Southeast Asian Bull, of Math. 25 (2001), 495-502.
- [24] J. Płonka, The lattice of subvarieties of the biregularization of the variety of Boolean algebras, submitted to Discussiones Mathematicae - General Algebra and Applicatons.
- [25] J. Płonka and A. Romanowska, Semilattice Sums, in: Universal Algebra an Quasigroup Theory (eds. A. Romanowska, J. D. H. Smith), Heldermann Verlag, Berlin 1992, 123-158.
- [26] J. Płonka and Z. Szylicka, Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras, Algebra Universalis (in print).
- [27] W. Taylor, Equational logic, Houston J. of Math., 5 (1979), 1-83.
- [28] A. Wojtunik, The generalized sum of an upper semlattice ordered system of algebras, Demonstratio Math. 24 (1991), No 1-2, 129-147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0006-0004