PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane radiacyjne metody badania składu tkanek i płynów ustrojowych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Praca poświęcona jest zagadnieniom związanym z zastosowaniami w diagnostyce medycznej technik radiacyjnych wykorzystujących promieniowanie X i y . Stanowi podsumowanie prac, prowadzonych przez autora od kilkunastu lat. Prace te dotyczą zarówno analizy teoretycznej, jak i praktycznych zastosowań metod radiacyjnych w dwóch obszarach diagnostycznych- w pomiarach stężeń pierwiastków śladowych w tkankach i w próbkach biologicznych, a także w badaniach stopnia mineralizacji tkanki kostnej. Poza pierwiastkami tworzącymi podstawowy budulec ciała ludzkiego w organiźmie występują w różnych, lecz bardzo niewielkich stężeniach, tzw. pierwiastki śladowe. Niektóre z nich odgrywają ważną rolę w procesach metabolicznych, inne mają charakter (w pewnym zakresie stężeń) obojętny, jeszcze inne (szczególnie metale ciężkie) są zdecydowanie toksyczne. Wiedza o roli biologicznej niektórych pierwiastków jest wciąż znikoma. Jedną z metod analitycznych będących cennym narzędziem w badaniach składu pierwiastkowego, jest rentgenowska analiza fluorescencyjna. Jest to nieniszcząca technika pozwalająca na jednoczesny pomiar stężeń wielu pierwiastków, a uzyskiwane w niej poziomy wykrywalności pierwiastków sięgają ułamków ug/g. Wykorzystanie potencjału tej metody wymaga jednak rozwiązania całego kompleksu problemów związanych z optymalizacją konstrukcji aparatury, warunków pomiaru, metodyki przygotowywania próbek, wreszcie analizy danych pomiarowych. W pracy przedstawiono analizę teoretyczną procesów pomiarowych w medycznych zastosowaniach in vitro i in vivo rentgenowskiej analizy fluorescencyjnej. Pozwoliła ona określić graniczne wartości czułości pomiaru i wykrywalności pierwiastków, a także sformułować szereg wskazówek dotyczących konstrukcji aparatury pomiarowej i metodyki pomiaru. W pracy przedstawiono także, oparte na przesłankach teoretycznych, rozwiązania konstrukcyjne trzech analizatorów przeznaczonych do badania in vitro próbek biologicznych oraz pomiarów in vivo stężeń metali ciężkich w tkance kostnej. Omówiono także wybrane wyniki prac badawczych wykonywanych we współpracy z ośrodkami medycznymi. Druga grupa prezentowanych zagadnień dotyczy pomiaru tzw. globalnych parametrów organizmu i tkanek, a główny nacisk położony jest na metody oceny stanu kośćca. Motywacją do prac nad rozwojem metod pomiaru stopnia mineralizacji tkanki kostnej stał się narastający problem zachorowań na osteoporozę - chorobę objawiającą się przyśpieszoną utratą masy kostnej i upośledzeniem mikrostruktury kości. Podstawą wczesnego wykrywania tej choroby są tzw. badania przesiewowe, które powinny być dostępne dla jak najszerszych kręgów społeczeństwa. Dostępność tego typu badań w Polsce jest bardzo ograniczona ze względu na zbyt małą liczbę ośrodków wyposażonych w aparaturę diagnostyczną, a także wysoki koszt badań. Prace prowadzone w ostatnich latach przez autora i grupę współpracowników skoncentrowane były na poszukiwaniu tanich i prostych metod badania tkanki kostnej. W niniejszej rozprawie przedstawiono syntetyczny przegląd i krytyczną analizę metod stosowanych w rutynowych badaniach kośćca. Jako alternatywę dla powszechnie stosowanych metod absorpcyjnych zaproponowano tzw. spektrometryczną metodę rozproszeniową. Zaprezentowana analiza teoretyczna, dotycząca czułości metody, jej precyzji oraz wpływu tkanki miękkiej i tłuszczowej w obszarze pomiaru na jej dokładność dowodzi, że w pełni spełnia ona wymagania dotyczące badań przesiewowych, przy jednocześnie relatywnie niskim koszcie aparatury. Metoda zastosowana została w unikalnym urządzeniu, służącym do kompleksowego badania, na jednym stanowisku, gęstości składowej mineralnej kośćca i stężeń metali ciężkich. W pracy przedstawiono wyniki badań porównawczych, konfrontujących rezultaty badań wykonywanych spektrometryczną metodą rozproszeniową z wynikami pomiarów komercyjnymi medycznymi densytometrami. Badania te w pełni potwierdzają przydatność proponowanych rozwiązań do zastosowania w rutynowych badaniach medycznych.
EN
The problem of medical applications of measurement techniques based on X and y rays attenuation and scattering is studied. Two main application areas are addressed: measurements of trace elements concentrations in various tissues and body fluids and the bone density measurements. The human body contains certain quantities of different trace elements. Some of them play important role in metabolic processes, the other ones are toxic, finally the influence of some elements on the biological processes is still unknown. The X-ray Fluorescence Analysis (XRF) is one of the most useful analytical techniques, which enables measurements of very low concentration of elements in a sample. The method is non-destructive and allows concentration estimation of several elements in a single measurement. The theoretical analysis of measurement processes in the XRF method is presented. The results are formulated in terms of limiting values of the measurement sensitivity and detection limits. Conclusions of the analysis were applied in the design of three XRF measurement systems, dedicated for both in vitro and in vivo measurements. The techniques of so-called global body parameters measurements, based on X and y rays attenuation and scattering are discussed. Measurements of bone mineral content are the main topic. Various methods, used in the medical practice, are described. The Compton to coherent scattering ratio (CCSR) is proposed as a method, which may be used for the early detection of osteoporosis. The theoretrical analysis of the CCSR method is presented. Corresponding measurement system, built in the Institute of Radioelectronics, is described. The results of the bone mass measurements, obtained in this system are compared with the values measured with commercial densitometers. The comparison proves that the proposed system may be applied as cheap screening method of osteoporosis.
Słowa kluczowe
Rocznik
Tom
Strony
3--166
Opis fizyczny
Bibliogr. 314 poz., wykr., tab., rys.
Twórcy
autor
  • Instytut Radioelektroniki
Bibliografia
  • 1. Pawłowski Z., Cudny W., Marzec J., Walentek J., Zaremba K., Konarzewski B., Rentgenowska analiza fluorescencyjna w pomiarach stężeń pierwiastków śladowych w organizmie, Postępy Techniki Medycznej, tom XXIII, nr 3-4 (1992), s. 115-124.
  • 2. Pawłowski Z., Zaremba K., in., Analiza składu substancji metodą fluorescencji rentgenowskiej, elektronizacja, 1994, no 7, p. 15-18.
  • 3. Pawłowski Z., Zaremba K., in., Metodyka i aparatura do badań in vitro i in vivo składu mineralnego i stężeń pierwiastków śladowych w tkankach, Konferencja „Biocybernetyka i Inżynieria Biomedyczna – Stan Badan w Polsce”, Komitet Biocybernetyki i Inżynierii Biomedycznej PAN, Warszawa 1994, s. 323-328.
  • 4. Pawłowski Z., Zaremba K., in., Rentgenowska analiza fluorescencyjna w badaniach zanieczyszczenia środowiska i zatruć organizmów, Materiały Seminarium „Czujniki w Ochronie środowiska”, Gdańsk 1994, s. 149-156.
  • 5. Pawłowski Z., Zaremba K., in., Rentgenowska analiza fluorescencyjna w pomiarach in vivo stężenia ołowiu w tkance kostnej, Materiały naukowe II Sympozjum Polskiej Grupy Badań Struktury Kości „Struktura Kości’95”, warszawa 1995, s. 54.
  • 6. Pawłowski Z., Zaremba K., in., X-ray fluorescence analysis in in vivo measurements of lead concentration in bone, 10th Congress of the Polish Society of Medical Physics, Kraków 1995 – Polish Journal of Medical Physics and Engineering (supplement) vol. 1, no. 1, 1995, s. 243-248.
  • 7. Pawłowski Z., Cudny W., Marzec J., Zaremba K., Konarzewski B., Metodyka i aparatura do badań in vitro i in vivo składu mineralnego i stężeń pierwiastków śladowych w tkankach, raport – grant KBN PB 0752/95/93/04, Warszawa 1995.
  • 8. Pawłowski Z., Zaremba K., in., X-ray fluorescence analysis method for in vivo measurement of heavy metals concentrations in bone, 4th European Conference on Engineering and Medicine “Bridging East and West”, Warszawa 1997, s. 147-148.
  • 9. Pawłowski Z., Domański G., Marzec J., Zaremba K., Konarzewski B., Metodyka i aparatura do nieinwazyjnych badań gęstości tkanek kostnych i stężeń ciężkich metali toksycznych w kościach, raport – grant KBN PB 8-11E03708, Warszawa 1998.
  • 10. Pawłowski Z., Cudny W., Marzec J., Zaremba K., Konarzewski B., Metodyka i aparatura do kompleksowych badań in vivo gęstości wysycenia kośćca składnikami mineralnymi, grant Programu Priorytetowego BIOINZYNIERIA, Warszawa 1995.
  • 11. Pawłowski Z., Domański G., Marzec J., Zaremba K., Konarzewski B., Badanie gęstości składowej mineralnej kości metodą cyfrowej radiografii fotodenstometrycznej, X Krajowa konferencja naukowa „Biocybernetyka i Inżynieria Biomedyczna”, Komitet Biocybernetyki i Inżynierii Biomedycznej PAN, Warszawa 1997, s. 861-866.
  • 12. Pawłowski Z., Domański G., Marzec J., Zaremba K., Konarzewski B., Badanie gęstości tkanek kostnych metodą analizy widmowej rozproszonego promienowania gamma, X Krajowa konferencja naukowa „Biocybernetyka i Inżynieria Biomedyczna”, Komitet Biocybernetyki i Inżynierii Biomedycznej PAN, Warszawa 1997, s. 867-872.
  • 13. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Sawicki A., Zaremba K., A novel application of gamma scattering techniques for determining the bone density in osteoporosis, Biocybernetics and Biomedical Engineering, Vol. 18, no 1-2 (1998) s. 35-48.
  • 14. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Sawicki A., Zaremba K., Kwantowa wydajność detekcji promieniowania i funkcja przenoszenia modulacji luminescencyjnych sensorów obrazów radiograficznych, OP PW, 2001.
  • 15. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Sawicki A., Zaremba K., Borecki A., Skaner scyntylacyjny do badań przesiewowych osteoporozy, OP PW, 2000.
  • 16. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Zaremba K., Digital Radiographic Photodensitometry in Diagnosis of Osteoporosis, Biocybernetics and Biomedical Engineering, Vol. 18, No 1-2 (1995) 5-17.
  • 17. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Zaremba K., Zależność precyzji pomiaru od dawki promieniowania i kwantowych wydajności detekcji (DQE) sensorów promieniowania, Ogólnopolskie Sympozjum „Kontrola jakości aparatury rentgenowskiej pod kątem zmniejszania narażenia pacjentów”, Kutno, wrzesień 1997, 95-113.
  • 18. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Zaremba K., Luminescencyjne sensory obrazów radiograficznych – modelowanie i optymalizacja, Krajowy Kongres Metrologii, Warszawa 2001, 567-570.
  • 19. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Zaremba K., Monte Carlo Modelling of Radiographic Luminescent Receptors, Biocybernetics and Biomedical Engineering 21 (2001) 37-52.
  • 20. Zaremba K., XRF Analysis of Trace Elements in Biological Samples – Theoretical analysis, praca złożona do druku w Biocybernetics and Biomedical Engineering.
  • 21. Zaremba K., DECON – Method of the Quantitative Analysis of the XRF Spectra for the Trace Element Analysis, praca złożona do druku w Biocybernetics and Biomedical Engineering.
  • 22. Konarzewski B., Pawłowski Z., Domański G., Marzec J., Zaremba K., Metody i aparatura do badań biokinematyki związków ołowiu w mózgu i tkance nerwowej, grant Programu Priorytetowego BIOINŻYNIERIA, Warszawa 1996.
  • 23. „Reference Man”, International Commission of Radiological Protection, Report 23, Pergamon Press, Oxford 1975.
  • 24. Emsley J., “The elements”, 3rd ed., Clarendon Press, Oxford, 1998.
  • 25. Woodard H.Q., Qhite D.R., The composition of body tissues, British Journal of Radiology, Vol. 59, No 708, dec 1986, 1209-1219.
  • 26. Ellis K.J., Eastman J.D., ed., “Human Body composition”, Plenum Press, New York 1993.
  • 27. Kaufman L., ed., “Medical Applications of Fluorescent Excitation Analysis” L. Kaufman, D.C. price (ed. CRC Press Inc., Boca Raton (FL)) 1979.
  • 28. Underwood, E.J., “Trace Elements in Human and Animal Nutrition”, Adademic Press, 3rd Ed., New York, 1971.
  • 29. Nikonorow M., Urbanek-Karłowska B., Toksykologia żywności, PZWL, Warszawa 1987.
  • 30. Yukawa M., et al., Distribution of Trace Elements in the Human Body Determined by Neutron Activation Analysis, arch. Environ. Health 35 (1980) 36-51.
  • 31. Oliver C.J., et al., Total body protein status of males infected with the human immunodeficiency virus, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, 197-200.
  • 32. Wilson D.C., et al., Noninvasive methods of body composition analysis in preterm infants: comparison with dilution of 2H218O, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 133-138.
  • 33. Baur L.A., Allen J.R., Waters D.L., Gaskin K.J., Total body nitrogen in prepubertal children, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 139-142.
  • 34. Baur L.A., et al., Total body nitrogen in idiopathic short stature and chronic diseases of childhood, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 143-146.
  • 35. Kooh S.W., et al., Bone mass and soft tissue compartments with anorexia nervosa, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 173-176.
  • 36. Bandurski J., Sawicki A., Boczoń S., „Osteoporoza”, OSTEOPRINT, Białystok 1994, wyd. II poprawione i uzupełnione.
  • 37. Pawelski S., Maj S., „Normy i kliniczna interpretacja badań diagnostycznych w medycynie wewnętrznej”, PZWL, Warszawa 1987.
  • 38. Tweedle D.E.F., „Postępowanie w zaburzeniach metabolicznych”, PZWL, Warszawa 1989.
  • 39. Kolmogorov Y., Konaleva V., Gonchar A., Analysis of trace elements in scalp hair of healthy people, hyperplasia and breast cancer patients with XRF method, Nucl. Instr. Meth. A448 (2000) 457-460.
  • 40. Ali P.A. et al., Initial measurements of platinum concentration in head and neck tumors using X-ray Fluorescence, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 281-284.
  • 41. Ali P.A. et al., Plane polarized x-ray fluorescence system for the in vivo measurement of platinum in head and neck tumours, Phys. Med. Biol. 1998, Vol. 43, 2337-2345.
  • 42. Evetts I. et al., Further observations on lead mobilization by cisplatin, in “Human Body Composition”, ed. K.J. Ellis and J.D. Eastman, Plenum Press, New York 1993, pp. 311-314.
  • 43. Farquharson M.J., Bradley D.A., The feasibility of a sensitive low-dose method for the in vivo evaluation of Fe in skin using K-shell X-ray fluorescence (XRF), Phys. Med. Biol. 1999, vol. 44, 955-965.
  • 44. Mourant J.R., Johnson T.M., Los g., Bigio I.J., non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements, Phys. Med. Biol. 1999, vol. 44, 1397-1417.
  • 45. Ogg C.A., Ali P.A., El-Sharkawi A.M., Hanckok D.A., 133Xe for the in vivo X-ray fluorescence measurement of platinum, Phys. Med. Biol. 1994, vol. 39, 2105-2112.
  • 46. Nilsson U., Schutz A., Skerfving S., Mattsson S., Cadmium in kidneys in swedes measured in vivo using X-ray fluorescence analysis, Int. Arch. Occup. Environ. Health, 67 (1995) 405-411.
  • 47. Kaufman L., Wilson C.J., determination of extracellular fluid volume by fluorescence excitation analysis of bromine, J. Nucl. Med., 14, 812-817, 1973.
  • 48. Kaufman L., Gamsu G., Fluorescent excitation in the measurements of clearance of heavy metals from the lungs, IEEE Trans. Nucl. Sci., NS-20 (1973) 402-414.
  • 49. Landrigan P.J., Toxicity of lead at low dose, British Journal of Industrial Medicine, vol. 46, (1989), 593-596.
  • 50. Seńczuk W. (red.), “Toksykologia. Podręcznik dla studentów farmacji”, Wydawnictwo Lekarskie PZWL, Warszawa 1994, wyd. II.
  • 51. Hietanen E., Kilpio J., Narhi M., Savolainen H., Vainio H., Biotransformational and Neurophysiological Changes in Rabbits Exposed to Lead, Arch. Environm. Contam. Toxicol. 9 (1980) 337-347.
  • 52. Markowitz M.E., Weinberger H.L., Immobilization-Related Lead Toxicity in Previously Lead-Poisoned Children, Paediatrics, vol. 86, no. 3 (1990) 455-457.
  • 53. Mason H.j., Somervaille L.J., Wright A.L., Chettle D.R., Scott M.C., Effect of Occupational Lead Exposure on serum 11,25-dihydroxyvitamin D Levels, Human & Experimental Toxicology 9 (1990) 29-34.
  • 54. Yoshimoto A., Blood Lead Level and Lead Exposure of Industrial Workers in Suburban Tokio, Toxicology and Applied Pharmacology 66(1982) 229-233.
  • 55. Landrigan P.J., Todd A.C., Review: Lead Poisoning, Western Journal of Medicine 161 (1994) 153-159.
  • 56. “Toxicological profile for lead”, Agency for Toxic Substances and Disease Registry, 1990, http://atsdr1.atsdr.cdc.gov:8080/ToxProfiles/ph8817.html.
  • 57. Wedeen R.D., In Vivo Tibial XRF Measurement of Bone Lead, Archives of Environmental Health, vol. 45, no 2, (1990) 69-71.
  • 58. Silbergeld E.K., Schwartz J., Mahaffey K., Lead and Osteoporosis: Mobilization of Lead from Bone in Postmenopausal Women, Environmental Research, vol. 47 (1988) 79-94.
  • 59. Silbergeld E.K., Lead in bone: Implications for toxicology during pregnancy and lactation, Environmental Health Perspectives, vol. 91 (1991) 63-70.
  • 60. Rothenberg S., Khan F., Manalo M., Jiang J., Cuellae R., Reyes S., Acosta S., Jauregui M., Diaz M., Sanchez M., Todd A.C. and Johnson C., Maternal Bone Lead Contribution to blood Lead During and After Pregnancy. Environmental Research Section A 82 (2000), 81-90.
  • 61. Jonson R., Borjesson J., Mattsson S., Unsgaard B., Wallgren A., Uptake and retention of platinum in patients undergoing cisplatin therapy, Acta Oncologica 30 (1991) 315-319.
  • 62. Markowitz M.E., Weinberger H.L., Immobilization-Related Lead Toxicity in Previously Lead-Poisoned Children, Pediatrics, vol. 86, no 3 (1990) 455-457.
  • 63. Berlin K. et al., Lead intoxication caused by skeletal disease, Scandinavian Journal of Work, Environment and Health, vol. 21, no 4 (1995) 296-300.
  • 64. Ahlgren L., Mattsson S., Cadmium in man measured in vivo by X-ray fluorescence analysis, Physics in Medicine and Biology, vol. 26 (1981) 19-26.
  • 65. Ktauel J.b., Speed M.A., Thomas B.W., Baddeley H., Thomas J., The in vivo Measurement of Organ Tissue of Cadmium, Int. J. of Applied Radiation and Isotopes, vol. 31 (1980), 101-106.
  • 66. McNeill F.E., Chettle D.R., Improvements to the in vivo Measurement of Cadmium in the Kidney by Neutron Activation Analysis, Appl. Radiat. Isot., vol. 49, no 5/6 (1998) 699-700.
  • 67. Gerhardsson L., Borjesson J., Mattsson S., Schutz A., Skerfving S., In vivo XRF as a means to evaluate the risk of kidney effects in lead and cadmium exposed smelter worker, appl. Radiat. Isot., vol. 49, no 5/6 (1998) 711-712.
  • 68. Ackerman Z. et al., Skin Zinc concentration in Patients with Varicose Ulcers, Int. J. of Dermatology, vol. 29., no 5 (1990) 360-362.
  • 69. Borjesson J. et al., In vivo XRF analysis of mercury: the relation between concentrations in the kidney and the urine, Phys. Med. Biol. Vol. 40 (1995) 413-426.
  • 70. O’Meara J.M., Borjesson J., Chettle D.R., Improving the in vivo X-ray fluorescence (XRF) measurement of renal mercury, Applied Radiation and Isotopes 53 (2000) 639-646.
  • 71. Day M.J., Hickling S.M., The Measurement of Antimony Deposit in the Lung, Phys. Med. Biol., vol 12, no 2 (1967) 455-467.
  • 72. Jonckheer M.H., and Deconinck F., X-ray fluorescence determination of stable iodine in thethyroid gland. A review, Acta Clinica Belgica, vol. 37, no 2 (1982) 91-102.
  • 73. Yasillo N.J., Ortego C.J., Charleston D.B., Beck R.N., A new high sensitivity thyroid X-ray fluorescence scanning system, IEEE Trans. Nucl. Sci., vol. NS-28, no 1 (1981) 184-1889.
  • 74. Snyder R.E., Secord D.C., The in situ measurement of strontium content in bone using X-ray fluorescence analysis, Physics in Medicine and Biology, vol. 27, no 4 (1982) 515-529.
  • 75. Vartsky D., LoMonte A., Ellis K.J., Yasamura S., Cohn S.H., A proposed method for in vivo determination of lithium in human brain, Phys. Med. Boil. Vol. 30, No 11 (1985) 1225-1236.
  • 76. Bertin E.P., “Principles and Practice of X-ray Spectrometric Analysis”, plenum Press, New York 1975.
  • 77. Dziunikowski B., “Energy Dispersive X-ray Fluorescence Analysis”, PWN, Warszawa 1989.
  • 78. Russ J.C., “Fundamentals of Energy Dispersive X-ray Analysis”, Butterworrhts & Co Ltd., London 1984.
  • 79. Tertian R., Claise F., “Principles of Quantiative X-ray Fluorescence Analysis”, Heyden & Son Ltd., London 1982.
  • 80. W. Bambynek et al., X-ray Fluorescence Yields, auger, and Coster-Kronig Transition Probabilities, Review of Modern Physics, vol. 44, no 4, October 1972, pp. 716-813.
  • 81. Bambynek W., New Evaluation of K-Shell Fluorescence Yields, in: Proc. Int. Conf. on X-ray and Inner-Shell processes in Atoms, Molecules and Solids, Leipzig 1984.
  • 82. Błochin M.A., “Fizyka promieni rentgenowskich”, PWN, Warszawa 1956.
  • 83. Debertin K., Helmer R.G., Gamma- and X-ray spectroscopy with semiconductor detectors, Elsevier Science Publisher, Amsterdam 1988.
  • 84. Guttmann G.D., Goodsitt M.M., The effect of fat on the coherent-to-Compton scattering ratio in the calcaneus: A computational analysis, Medical Physics, vol. 22, no 8, Aug 1995, 1229-1234.
  • 85. Hubell J.H. et al., Atomic From Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections, Journal of Physical and Chemical Reference Data, vol. 4, no 3 (1975) 471-538 (errata: vol. 6, no 2 (1977) 615-616.
  • 86. Hubell J.H., Overbo I., Relativistic Atomic From Factors and Photon Coherent Scattering Cross Sections, Journal of Physical and Chemical Reference Data, Vol. 8, no 1 (1979) 69-105.
  • 87. Shirawa T., Fujino N., Theoretical Calculation of Fluorescent X-ray Intensities in fluorescent X-ray Spectrochemical Analysis, Japanese Journal of Applied Physics, vol. 5, no 10 (1966) 886-899.
  • 88. Bilbrey D.B., Bogart G.R., Leyden A.R., Comparison of Fundamental Parameters Program for Quantitative X-ray Fluorescence Spectroscopy, X-ray Spectrometry 17 (1988) 63-73.
  • 89. Hołyńska B., Muia L.M., Maina D.M., Evaluation of Fundamental parameters Method for Biological Materials and Solid Analysis by Energy dispersive X-Ray spectrometry, appl. Radiat. Isot. Vol. 38, No 1 (1987) 45-47.
  • 90. Szaloki I., Lewis D.G., Bennet C.A., Kilic A., Application of the fundamental parameter method to the in vivo fluorescence analysis of Pt, Phys. Med. Bio. 44 (1999) 1245-1255.
  • 91. Knoll G.F., “Radiation detection and measurement”, Wiley & Sons, New York 1989.
  • 92. Hitomi K., Muroi O., Shoji T., Suchiro T., Hiratate Y., Room temperature X- and gamma-ray detectors using thallium bromide crystals, Nucl. Instr. Meth. A436 (1999) 160-164.
  • 93. Huber A.C., Pantazis J.A., Jordanov V., High performance, thermoelectrically cooled X-ray and gamma ray detectors, Nucl. Instr. Meth. B 99 (1995) 665-668.
  • 94. Iwanczyk J.S., Patt B.E., Wang Y.J., Khusainov A.Kh., Comparison HgI2, CdTe and Si(p-i-n) X-ray detectors, Nucl. Instr. Meth. A 380 (1996) 186-192.
  • 95. Kamae T., Developments in semioconductor detector technology and new applications – symposium summary, Nucl. Instr. Meth. A 436 (1999) 297-303.
  • 96. McGregor D.S., Hermon H., Room-temperature compound semiconductor radiation detectors, Nucl. Instr. Meth. A395 (1997) 101-124.
  • 97. Bates R.L. et al., Recent results on GaAs detectors, Nucl. Instr. Meth. A392 (1997) 269-273.
  • 98. Deich V., Roth M., Improved performance lead iodine nuclear radiation detectors, Nucl. Instr. Meth. A380 (1996) 169-172.
  • 99. Vaasjoki R., Rantanen J., Determination of toxic metals in blood by X-ray fluorescence spectrometry, Scand. J. Work Environ. & Health 1 (1975) 184-192.
  • 100. Yarom R., Blatt J., Gorodetsky Y., Robin G.C., Microanalysis and X-ray fluorescence spectrometry of platelets in diseases with elevated muscle calcium, European Journal of Clinical Investigation 10 (1980) 143-147.
  • 101. Cesareo R., Viezzoli G., Trace element analysis in biological samples by using XRF spectrometry with secondary radiation, Phys. Med. Bio., 28, No 11 (1983), 1209-1218.
  • 102. Ong P.S., Lund P.K., Litton C.E., Mitchell B.A., An energy dispersive system for the analysis of trace elements in human blood serum, Advances in X-ray Analysis 16 (1972) 124-133.
  • 103. Rastegar F. et al., Simultaneous Determination of Trace Elements in Serum by Energy-Dispersive X-ray Fluorescence spectrometry, clinical Chemistry 30 (1984) 1300-1303.
  • 104. Roberrecht H., Van Grieken R., Shani J., Barak S., Evaluation of multielement analysis of blood serum by energy-dispersive X-ray spectrometry, Anal. Chim. Acta, 136 (1982) 285-291.
  • 105. Cesareo R., Tallarida G., Baldoni F., Determination of Hemodynamic Parameters in the Rabbit by X-ray Fluorescence Excitation, International Journal of Applied Radiation and Isotopes, 26 (1975) 285-289.
  • 106. Wang X., Tian J., Yin X.M., Zhang X., Wang Q.Z., The excrection of biotrace elements using the multitracer technique in tumor-bearing mice, Applied Radiation and Isotopes 53 (2000) 969-974.
  • 107. Yanaga M. et al., Multitracer study on Uptake and Excretion of Trace elements in rats, Applied Radiation and Isotopes 47 (1996) 235-241.
  • 108. Yarom R. et al., Elements in muscle in vivo and in vitro with X-ray spectrometry, Muscle & Nerve, Vol. 1, (1978) 486-494.
  • 109. Yarom R., Robin G.C., Gorodetsky R., X-ray Fluorescence Analysis of Muscles in scoliosis, Spine 3, (1978) 142-145.
  • 110. Preiss I.L., Ptak T., Frank A.S., Trace element profiles of biological samples using radioisotope X-ray fluorescence, Nucl. Instr. Meth. A242 (1986) 539-543.
  • 111. Bacso J., Kovacs, Horvath S., Investigation of some inorganic compounds in human hair, Radiochem. Radioanal. Letters 33(4) (1978) 273-280.
  • 112. Cookson J.A., pilling F.D., Trace Element Distribution Across the Diameter of Human Hair, Phys. Med. Biol. 20, No 6 (1975) 1015-1020.
  • 113. Kubo H., A simple method of X-ray fluorescence analysis in hair, Phys. Med. Biol. 26, No 5 (1981) 867-874.
  • 114. Toribara T.Y., Jackson D.A., Nondestructive X-ray Fluorescence Spectrometry for determination of Trace Elements along a single Strand of Hair, anal. Chim. 54 (1982) 1844-1849.
  • 115. Toribara T.Y., Jackson D.A., X-ray Fluorescence Measurement of the Zinc Profile of a Single Hair, clinical Chemistry 28 (1982) 650-654.
  • 116. Somervaille L.J. et al., Comparison of two vitro methods of bone lead analysis and the implications for in vivo measurements, Physics in Medicine and biology, vol. 31, no 11 (1986) 1267-1474.
  • 117. Palma P.A., Seifert W.E., Caprioli R.M., Howell R.R., X-ray fluorescence spectrometry in the analysis of trace elements in human milk, The Journal of Laboratory and Clinical Medicine 102, No 1 (1983) 88-94.
  • 118. Shapiro I.M., Needleman H.L., Tuncay O.C., The Lead Content of Human Decidous and Pernament Teeth, Environmental Research 5 (1972) 467-470.
  • 119. Seifert W.E., Stewart D.J., Benjamin R.S., Caprioli R.M., Energry-dispersive X-ray fluorescence determination of platinum in plasma, urine, and cerebrospinal fluid of patients administered cis-dichlorodiammineplatinum (II), Cancer Chemother. Pharmacol. 11 (1983) 120-123.
  • 120. Cesareo R., A new tomographic device based on the detection of fluorescent X-rays, Nucl. Instr. Meth. A277 (1989) 669-672.
  • 121. Hogan J.P., Gonsales R.A., Krieger A.S., Fluorescnet Computer Tomography: a model for Correction of X-ray absorption, IEEE Transactions on Nuclear Science, vol. 38, No 6, (1991) 1721-1727.
  • 122. Takeda T. et al., Fluorescents scanning X-ray tomography with synchrotron radiation, Rev. Sci. Instr. Vol. 66, No 2(1995) 1471-1473.
  • 123. Belkin M. et al., Non-invasive quantitation of corneal copper in hepatolenticular degeneration (Wilson’s disease), Lancet, vol. 1 (1976) 391-392.
  • 124. Gorodetsky R. et al., Noninvasive analysis of skin iron and zinc levels in β-thalassemia major and intermedia, Journal of Laboratory and Clinical Medicine, vol. 105, no 1 (1985) 44-51.
  • 125. Sheskin J., Gorodetsky R., Weinreb A., Loewinger E., Iron Content of Skin before and after Thalidomide Treatment of Lepra Reaction, Dermatologica 163 (1981) 145-150.
  • 126. Olkkonen H. et al., In Vivo measurement of absolute tissue iodine content by fluorescence exacitation, Investigative Radiology, vol. 14, no 3 (1979) 246-249.
  • 127. Christofferson J.O., Mattsson S., Polarised X-rays in XRF-analysis for improved in vivo detectability of cadmium in man, Physics in Medicine and Biology, vol. 28, no 10 (1983) 1135-1144.
  • 128. McLellan J.S., Thomas B.J., Fremlin J.H., Harvey T.C., Cadmium – Its in vivo detection in man, Phys. Med. Biol. 20, vol. 1 (1975) 88-95.
  • 129. Nilsson U. et al., Further improvements of XRF analysis of cadmium in vivo, in “Advances in In Vivo Body Composition Studies”, S. Yasumura et al. (ed.), Plenum Press, New York 1990, 297-301.
  • 130. Thomas B.J. et al., A Transportable System for the Measurement of Liver Cadmium in vivo, Phys. Med. Bio. 24, no 2 (1979) 432-437.
  • 131. Bloch P., Shapiro I.M., An X-ray Fluorescence Technique to Measure In Situ the Heavy Metal Burdens of Person Exposed to These Elements in the Workplace, Journal of Occupational Medicine, vol. 28, no 8 (1986) 609-614.
  • 132. Borjesson J. et al., In vivo X-ray fluorescence analysis with applications to platinum, gold, and mercury in man – experiments, improvements, and patient measurements, in “Human Body Composition”, K.J. Ellis, J.D. Eastman (ed.), Plenum Press, New York 1993, 275-280.
  • 133. Smith J.R. et al., On the In Vivo Measurement of Mercury Using Neutron Capture and X-ray Fluorescence, International Journal of Applied Radiation and Isotopes, vol. 33, 1982, 557-561.
  • 134. Ahlgren L., et al., X-ray fluorescence analysis of lead in human skeleton in vivo, Scandinavian Journal of Work, Environment and Health, vol. 2 (1976) 82-86.
  • 135. Ahlgren L., Mattsson S., An X-ray Fluorescence Technique for in vivo Determination of Lead Concentration in a Bone Matrix, Physics on Medicine and biology, vol. 24, no 1 (1979) 136-145.
  • 136. Ahlgren L., et al., In-vivo determination of lead in the skeleton after occupational exposure to lead, British Journal of Industrial Medicine, vol. 37 (1980) 109-113.
  • 137. Armstrong R. et al., Repeated measurements of tibia lead concentrations by in vivo X-ray fluorescence in occupational exposure, British Journal of Industrial Medicine 49 (1992) 14-16.
  • 138. Batuman V. et al., Reducing Bone Lead Content by Chelation Treatment in Chronic Lead poisoning: An in Vivo X-ray Fluorescence and bone Biopsy Study, Environmental Research 48 (1989) 70-75.
  • 139. Bloch P. et al., Measurement of Lead Content of Children’s Teeth in situ by X-ray Fluorescence, Physics in Medicine and Biology, vol. 20, no 6 (1976) 56-63.
  • 140. Bloch P., Mitchell G., Shapiro I.M., Garavaglia G., Child lead exposure determined from measurement of X-ray fluorescence of teeth in-situ, IEEE Trans. Nucl. Sci., NS-24. No 1 (1977), 577-580.
  • 141. Chettle D.R., Scott M.C., Somervaille L.J., Improvements in the recision of in vivo bone lead measurement, Physics in Medicine and Biology, vol. 34, no 9 (1989) 1295-1300.
  • 142. Chettle D.R., Scott M.C., Somervaille L.J., Lead in Bone: Sampling and Quantitation Using K X-ray Excited by Cd-109, Environmental Health Perspectives, vol. 91, (1991) 49-55.
  • 143. Erkkila J. et al., In vivo measuremnat of lead in bone at four anatomical sites: long term occupational and consequent endogenous exposure, British Journal of Industrial Medicine, vol. 49 (1992) 631-644.
  • 144. Gerhardsson L. et al., In vivo Measuremnat of Led in bone in Long-term Exposed Lead Smelter Workers, Archives of Environmental Health, vol. 48, no 3, (1993) 147-156.
  • 145. Gordon C.L., Chettle D.R., Webber C.E., An improved instrument for the in vivo detection of lead in bone, British Journal of Industrial Medicine 50 (1993) 637-641.
  • 146. Green S. et al., An enhanced sensitivity K-shell X-ray fluorescence technique for tibial lead determination, Phys. Med. Biol. 38 (1993) 389-396.
  • 147. Jones K.W. et al., In Vivo Determination of Tibial Lead by X-ray Fluorescence with a Cd-109 Source, in “In vivo Body Composition Studies”, K.J. ellis, S. Yasumura, W.D. Morgan (ed.), Institute of physical Sciences in Medicine, London 1987, Chapt. 57, 363-373.
  • 148. Kim R., Are A., Rotnitzky A., Amarasiriwardena C., Hu H., K. X-ray fluorescence measurements of bone lead concentration: the analysis of low-lewel data, Phys. Med. Biol. 40 (1995) 1475-1485.
  • 149. Somervaille L.J., Chettle D.R., Scott M.C., In vivo measurement of lead in bone using X-ray fluorescence, Physics in Medicine and Biology, vol. 30, no 9 (1985) 929-943.
  • 150. Somervaille L.J. et al., X-ray Fluorescence of Lead in vivo: simultaneous measurement of a cortical and a trabecular bone in a pilot study”, in “In vivo body composition studies”, K.J. Ellis, S. Yasumara, W.D. Morgan (ed.), Institute of Physical Sciences in Medicine, London 1987, chapt. 53, 325-333.
  • 151. Somervaille L.J. et al., In vivo measurement of bone lead – a comparison of two X-ray fluorescence techniques used at three different bone sites, Physics in Medicine and Biology, vol. 34, no 12 (1989) 1833-1845.
  • 152. Tassler P.L., Schwartz B.S., coresh J., Stewart W.F., todd A.C., Associations of Tibia Lead, DMSA-Chelatable Lead, and Blood Lead with Measures of Peripherial Nervous system function in former organolead manufacturing workers, American Journal of Industrial Medicine 39 (2001) 254-261.
  • 153. Todd A.C et al., In Vivo X-ray fluorescence of lead in bone using K X-ray excitation with Cd-109 sources: Radiation Dosimetry Studies, Environmental Research, vol. 57 (1992) pp. 117-132.
  • 154. Todd A.C., McNeill F.E., In vivo measurement of lead in bone using a 109Cd, in “Human Body Composition”, K.J. Ellis, J.D. Eastman (ed.), Plenum Press, New York 1993, 299-302.
  • 155. Todd A.C., Contamination of in vivo bone-lead measurements, Phys. Med. Biol. 45 (2000) 229-240.
  • 156. Todd A.C., Caroll S., Godbold J.H., Moshier E.L. Khan F.A., The effect of measurement location on tibia lead XRF measurement results and uncertainty, Phys. Med Biol. 46 (2001) 29-40.
  • 157. Wielopolski L. et al., Feasibility of noninvasive analysis of lead in the human tibia by soft X-ray fluorescence, Medical Physics, vol. 10, no 2, (1983) 248-251.
  • 158. Hu H., Milder F.L., Burger D.E., X-ray Fluorescence: Issues Surrounding the Application of a new tools for measuring burden of lead, Environmental Research, vol. 49 (1989) 295-317.
  • 159. O’Meara J.M., Chettle D.R., McNeill F.E., Webber C.E., The feasibility of measuring bone uranium concentratins in vivo using source excited K X-ray fluorescence, Phys. Med. Boil. 42 (1997) 1109-1120.
  • 160. O’Meara J.M., Chettle D.R., McNeill F.E., Webber C.E., In vivo X-ray fluorescence (XRF) Measurement of Uranium in bone, Appl. Radiat. Isot. 49, no 5/6 (1998) 713-715.
  • 161. Jonson R., Mattsson S., Unsgaard B., A method for in vivo analysis of platinum after chemotherapy with cisplatin, Physics in Medicine and Biology, vol. 33, no 7 (1988) 847-857.
  • 162. Morgan W.D. et al., In vivo measurement o platinum and lead in patients undergoing cisplatin chemotherapy, in “In vivo body composition studies”, K.J. Ellis, S. Yasumura, W.D. Morgan (ed.), Institutr of Physical Sciences in Medicine, London 1987, chapt. 52, 318-324.
  • 163. Scott J., Lillicrap S., Xe-133 for the X-ray fluorescence assessment of gold in vivo, Physics in Medicine and Biology, vol. 33, no 7 (1988) 859-864.
  • 164. Shakeshafl J. et al., X-ray fluorescence determination of gold in vivo, in “Human body Composition:, K.J. Ellis, J.D. Eastman (ed.), Plenum Press, New York 1993, 307-310.
  • 165. Shakeshaft J. Lillicrap S.C., Technical note: An X-ray fluorescence system for the determination of gold in vivo following chrysotherapy, The British Journal of Radiology, 66(1993) 714-717.
  • 166. Curie L.A., limits for Qualitative Detection and Quantitative Determination. Application to Radiochemistry, Analytical Chemistry, vol. 40, no 3, (1968) 586-593.
  • 167. Taylor J.R., “Wstęp do analizy błędu pomiarowego”, PWN, Warszawa 1995.
  • 168. Jorch H.H., Campbell J.L., On the analytic fitting of full energy peaks form Ge(Li) and Si(Li) Photon detectors, Nucl. Instr. Meth. 143 (1977) 551-559.
  • 169. He T., Gardner R.P., Verghese K., An improved Si(Li) detector response function, Nucl. Instr. Meth. A299 (1990) 354-366.
  • 170. Jorch H.H., Campbell J.L., On the analytic fitting of full energy peaks from Ge(Li) and Si(Li) photon detectors, II., Nucl. Instr. Meth. 159 (1979) 163-170.
  • 171. Campbell J.L., Millman B.M., Maxwell J.A., Perujo A., Teesdale W.J., Analytic fiiting of monoenergetic peaks from Si(Li) X-ray spectrometers, Nucl. Instr. Meth. B9 (1985) 71-79.
  • 172. McNelles L.A., Campbell J.L., Analytic approximations to peak shapes produced by Ge(Li) and Si(Li) spectrometers, Nucl. Instr. Meth. 127 (1975) 73-81.
  • 173. Logoria L.C., Naboulsi A.H., Gray P.W., MacMahon T.D., Analytical peak fitting for gamma-ray analysis with Ge detector, Nucl. Instr. Meth. A299(1990) 308-312.
  • 174. Watanabe Y., kubozoe T., Mukoyama T., Analytical functions for fitting K X-ray doublet peaks form Si(Li) detectors, Nucl. Instr. Meth. B17 (1986) 81-85.
  • 175. Helmer R.G., Lee M.A., Analytical functions for fitting peaks form Ge semiconductor detectors, Nucl. Instr. Meth. 178 (1980) 499-512.
  • 176. Hammed MA., Gray P.W., Naboulsi A.H., Mac Mahon T.D., Analytical peak fitting for gamma-ray spectrum analysis with Ge detectors, Nucl. Instr. Meth A334 (1993) 543-550.
  • 177. Barry P.S., Mossman D.B., Lead concentrations in human tissues, British Journal of Industrial Medicine, vol. 27 (1970) 339-351.
  • 178. Barry P.S., A comparison of concentrations of lead in human tissues, British Journal of Industrial Medicine, vol. 32 (1975) 119-139.
  • 179. Chestnut III C.Ch., Non-Invasive techniques for quantitating bone mass: fact or fancy, in: “In vivo body composition studies”, K.J. Ellis, S. Yasumura, W.D. Morgan (ed.), Institute of Physical Sciences in Medicine, London 1987, chapt. 36, 221-225.
  • 180. Todd A.C., L-shell X-ray fluorescence measurement of lead in bone: system development, Physics in Medicine and Biology, vol. 47 (2002) 507-522.
  • 181. Todd A.C., L-shell X-ray fluorescence measurement of lead in bone: theoretical considerations, Physics in Medicine and Biology, vol. 47 (2002) 491-505.
  • 182. Todd A.C., Carroll S., Geraghty C., Khan F.A., Moshier E.L., Tang S., Parsons P.J., L-shell X-ray fluorescence measurement of lead in bone: accuracy and precision, Physics in Medicine and Biology, vol. 47 (2002) 1399-1419.
  • 183. Rosen J.F., Development of L-line X-ray fluorescence instrumentation and its application in in-vivo measurement of led in bone, advances in X-ray Analysis 38 (1995) 573-577.
  • 184. Scott M.C., Chettle D.R., In vivo elemental analysis in occupational medicine, Scand. J. Environ. Health 12 (1986) 81-96.
  • 185. Nilsson U., Skerfving S., In vivo X-ray fluorescence measurement of cadmium and lead, Scand. J. Work. Environ. Health, 19, supl. 1 (1993) 54-58.
  • 186. Ali P.A. at al., Initial measurements of platinum concentration in head and neck tumors using X- ray fluorescence in “Human Body Composition”, K.J. Ellis, J.D. Eastman (ed.), Plenum Press, New York 1993, 281-284.
  • 187. Radioactive low energy sources, technical Bulletin 72/6 (1972), The Radiochemical Centre Amersham.
  • 188. Materiały reklamowe firmy Amptek, 1996.
  • 189. Todd A.C., McNeill F.E., Fowler B.A., In Vivo X-ray fluorescence of Lead in Bone, Environmental Research 59 (1992) 326-335.
  • 190. Rabinowitz M.B., Wetherill G.W., Kopple J.D., Kinetics analysis of lead metabolism in healthy humans, J. Clin. Invest. 58 (1976) 260-270.
  • 191. Marcus A.H., The Body Burden of Lead: Comparison Mathematical Models for Accumulation, Environmental Research 19 (1979) 79-90.
  • 192. Bert J.L., van Dusen L.J., Grace J.R., A generalized model for the prediction of lead body burdens, Environmental Research 48 (1989) 117-127.
  • 193. Christoffersson J.O., et al., Decrecase of Skeletal Lead Levels in man after end of occupational exposure, Archives of Environmental Health, vol. 41, no 5 (1986) 312-318.
  • 194. Schutz A., Skerfving S., Ranstam J., Kinetics of lead in blood after the end of occupational exposure, Scand. J. Environ. Health. 13 (1987) 221-231.
  • 195. Nilsson W., et al. Kinetics of lead in bone and blood after and of occupational exposure, Phar. And Toxicol. (1991) 69, 477.
  • 196. Abro E., Johansen G.A., Low noise gama-ray and X-ray detectors based on CdTe-materials, Nucl. Instr. Meth. A377 (1996) 470-474.
  • 197. Eisen Y., Current stade-of-the-art industrial and research applications using room-temperature CdTe and CdZnTe solid state detector, Nucl. Instr. Meth. A380 (1996) 431-439.
  • 198. Eisen Y., Shor A., Mardor I., CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems, Nucl. Instr. Meth. A428 (1999) 158-170.
  • 199. Arlt R., Gryshuk V., Sumah P., Gamma spectrometric characterization of various CdTe and CdZnTe detectors, Nucl. Instr. Meth. A428 (1999) 127-137.
  • 200. Butler J.F., Lingren C.L., Doty F.P., Cd1-xZnxTe gamma ray detectors, IEEE Trans. Nucl. Sci. Vol. 39, No 4 (1992) 605-609.
  • 201. Iwanczyk J.S., et al. Room-temperature mercuric iodide spectrometry for low-energy X-rays, Nucl. Instr. Meth. 193 (1982) 73-77.
  • 202. Shah K.S., et al., Electronic noise in lead iodine X-ray detectors, Nucl. Instr. Meth. A353 (1994) 85-88.
  • 203. Fiorini C., Longoni A., Perotti F., New detectors for ϒ-ray spectrometry and imaging, based on scintillators coupled to silicon drift detectors, Nucl. Instr. Meth.A254 (2000) 241-246.
  • 204. Leutenegger P., et al., Works of art investigation with silicon drift detectors, Nucl. Instr. Meth. A439 (2000) 458-470.
  • 205. Shah K.s., Lund J.C., Olschner F., Moy L., Squillante M.R., Thallium bromide radiation detectors, IEEE Trans. Nucl. Sci., vol. 36 no 1 (1989) 199-202.
  • 206. Cesareo R., Gigante G.E., Castellano A., Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence, Nucl. Instr. Meth. A248 (1999) 171-181.
  • 207. Armantrout G.A., Radiation detectors: needs and prospects, Nucl. Instr. Meth. 193 (1982) 41-47.
  • 208. Dyson N.A., “Promieniowanie rentgenowskie w fizyce atomowej i jądrowej”, PWN, Warszawa, 1978.
  • 209. Standzenieks P., Selin E., Backround reduction of X-ray fluorescence spectra in a secondary target energy dispersive spectrometer, Nucl. Instr. Meth. 165 (1979) 63-65.
  • 210. Krischke P., Optimization of an XRF set-up by using highly polarized exciting radiation, Nucl. Instr. Meth. A242 (1986) 566-568.
  • 211. Kaufman L., Shosa D., Camp D.C., A high intensity source of polarized X-rays for fluorescent excitation analysis (FEA), IEEE Trans. Nucl. Sci. NS-24, (1977) 525-531.
  • 212. Kaufman L., Shosa D., Arbel A., Zender M., Improved quantitation of low-level tracers in X-ray fluorescence excitation analysis, Nucl. Instr. Meth. 193 (1982) 105-110.
  • 213. Ryon R.W., Zahrt J.D., Wobrauschek P., Aiginger H., The use of polarised for improved detection limits in energy-dispersive X-ray spectrometry, Adv. X-ray Analysis 25 (1982) 63-74.
  • 214. Morita Y., Hoiser K.E., Lorenz V., Kaufman L., Mori H., Hoffman J.E., A low background X-ray fluorescence system for microsphere quantitation, IEEE Trans. Nucl. Sci. 35 (1988), 691-697.
  • 215. Majewska U., Bana D., Braziewicz E., Braziewczi J., Pajek M., Total reflection X-ray fluorescence: a new tool for trace elements detection for medical application, Polish J. Med. Phys. & Engin. Vol. 1, no 1 (1995) 35-46.
  • 216. Schwenke H., Knoth J., A highly sensitive energy-dispersive X-ray spectrometer with multiple total reflection of the exciting beam, Nuclear Instruments and Methods 193(1982) 239-243.
  • 217. Yamaguchi H., Stoh S., Igarashi s., Naitoh K., Hasegawa R., Trace analysis of high-purity copper by total reflection X-ray fluorescence spectrometry, Fresenius J. Anal. Chem. 362 (1998) 395-398.
  • 218. Dragie M., Markowicz A., Tajani a., Valkovic V., Optimized sample preparation procedures for the analysis of solid materials by total-reflection XRF, Fresenius J. Anal. Chem. (1997) 589-593.
  • 219. Kubala-Kukuś A., Braziewicz J., Banaś D., Majewska U., Goźdź S., Urbaniak A., Trace element load in cancer and normal lung tissue, Nucl. Instr. Meth. B150 (1999) 139-199.
  • 220. Szokefalvi-Nagy Z., Ion beam analysis of metalloproteins, Nucl. Instr. Meth. B109/110 (1996) 234-238.
  • 221. Johansson E., Lindh U., Johansson H., Sundstrom C., Micro-PIXE analysis of macro- and trace elements in blood cells and tumors of patients with breast cancer, Nucl. Instr. Meth. B22 (1987) 179-183.
  • 222. Kwiatek W.M., Cholewa M., Kajfosz J., Jones K.W., Correlation of trace elements in hair of patients with colon cancer, Nucl. Instr. Meth. B22(1987) 166-171.
  • 223. Hebbrecht G., Maenhaut W., De Reuck J., Brain trace elements and aging, Nucl. Instr. Meth. B150 (1999) 208-213.
  • 224. Tapper U.A.S., Malmqvist K.G., Brun A., Salford L.G., Elemental regional distribution in human brain tumors – PIXE analysis of biopsy and autopsy samples, Nucl. Instr. Meth. B22 (1987) 176-178.
  • 225. Miura Y., Nakai K., Sera K., Sato M., Trace elements in sera from patients with renal disease, Nucl. Instr. Meth. B150 (1999) 218-221.
  • 226. Branett E., Nordin B.E., The radiological diagnosis of osteoporosis: A new approach, Clinical Radiology. Journal of Faculty of Radiologists, vol. 11 (1960) 166-174.
  • 227. Dequeker J., Quantitative radiology: radiogrammetry of cortical bone, British Journal of Radiology, vol. 49, no 587 (197) 912-920.
  • 228. Marcinkowska-Suchowierska E., Osteoporoza, Gazeta Lekarska, vol. 82, no 11, 1997, s. 39.
  • 229. Lenchik L., Sartoris D.J., Current concepts in osteoporosis, American Journal of Roentgenology, vol. 168 (1997) 905-911.
  • 230. Jonson R., Mass attenuation coefficients, quantities and units for use in bone mineral determination, Osteoporos. Int. 3 (1993) 103-106.
  • 231. Augat P., Duerst T., Genant H.K., Quantitative Bone Mineral assessment at the Forearm: A review, Osteoporos. Int. 8 (1998) 299-310.
  • 232. Meema H.E., Harris C.K., Porrett R.E., A Method for Determination of Bone-Salt of Cortical Bone, Radiology, vol. 82 (1964) 986-997.
  • 233. Colbert C., Bachtell R.S., Radiographic Absorptiometry (photodensitometry), in: “Non-lnvasive Measurements of Bone Mass and Their Clinical application”, Cohn S.H., (editor), CRC Press inc. Boca Raton, Florida, 1981, 52-82.
  • 234. Lyon A.J. et al., Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females, European Journal of Pediatrics, vol. 155 (1996) 377-382.
  • 235. Zamberlan N., et al., Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females, European Journal of Pediatrics, vol. 155 (1996) 377-382.
  • 236. Domański G., Optymalizacja skaningowych radiograficznych metod badania gęstości tkanek kostnych, praca doktorska, PW, Warszawa 2000.
  • 237. Yates A.J. et al., Radiographic absorptiometry in the diagnosis of osteoporosis, The American Journal of Medicine, vol. 98 (suppl. 2A) (1995) 41-47.
  • 238. Iwamoto J., et al., Age-related changes in cortical bone in women: Metacarpal bone mass measurement study, Journal of Orthopaedic Science, vol. 3 (1998) 90-94.
  • 239. Tothill P., Methods of bone mineral measurement, Physics in Medicine and Biology, vol. 34, no 5 (1989) 543-572.
  • 240. Baran D.T., et al., Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry, Calcified Tissue International, Vol. 61 (1997) 433-440.
  • 241. Cameron J.R., Sorenson J., Measurement of bone mineral in vivo: An improved method, Science, vol. 142 (1963) 230-236.
  • 242. Christiansen C., Rodbro H. Jensen, Bone mineral content in the forearm measured by photon absorptiometry, Scandinavian Journal of Clinical and Laboratory Investigation, vol. 35 (1975) 323-330.
  • 243. Geusens P., Dequeker J., Verstraeten A., Nijs J., Age-Sex-, and Menopause- related Changes of Vertebral and Peripheral bone: Population Study Using Dual and Single Photon Absorptiometry and Radiogrammetry, The Journal of Nuclear Medicine 27 (1986) 1540-1549.
  • 244. Eckert P., Casez J.P., Thiebaud D., Schnyder P., Burckhard P., Bone Desitometry of the Forearm: Comparison oF Single-photon and Dual-Energy X-ray Absorptiometry, Bone, vol. 18, no 6 (1996) 575-579.
  • 245. Wahner H.W. et al., dual-photon Gd-153 absorptiometry of bone, Radiology, vol. 156 (1985) 203-206.
  • 246. Mazess R.B., Photon absorptiometry, in: “Non-Invasive Measurements of Bone Mass and Their clinical application”, Cohn S.H. (editor), CRC Press Inc. bona Raton, Florida (1981) pp. 86-88.
  • 247. Goodwin P.N., Methodologies for the Measurement of Bone density and Their Precision and Accuracy, Seminars in nuclear Medicine, vol. 17, no 4 (1987) 293-304.
  • 248. Matusik H., Lorenc R.S., Densytometria kości – podstawy, metoda badan oraz interpretacja wyników, w :”Diagnostyka osteoporozy”, Lorenc R.S., Walecki J. (redaktorzy), Springer PWN, Warszawa 1998, ss. 44-79.
  • 249. Johnston C.c., Slemenda C.W., Identification of patients with low bone mass by single photon absorptiometry and single-energy X-ray absorptiometry, The American Journal of Medicine, vol. 98 (suppl. 2A) (1995) 37-40.
  • 250. Dunn W.L., Wahner H.W., Riggs B.L., Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry, Radiology, vol. 136 (1980) 485-487.
  • 251. Cullum I.D., Ell P.J., Rydr J.P., X-ray dual photon absorptiometry: a new method for the measurement of bone densitometry, The British Journal of Radiology 62 (1989) 587-592.
  • 252. Jergas M., Genant H.K., Spinal and Femoral DXA for the Assessment of Spinal Osteoporotic, Calcified Tissue International, Vol. 61 (1997) 351-357.
  • 253. Cardenas J.L., et al., Comparison of three bone sensitometry methods in osteoporotic women, Calcified Tissue International, Vol. 61 (1997) 358-361.
  • 254. Wellens R., Roche A.F., Guo S., Chumlea W.C., Siervogel R.M., Fat-free mass and percent body fat assessment by dual-energy X-ray absorptiometry, densitometry and total body water, in “Human Body Composition”, K.J. Ellis and J.D. Eastman (ed.), Plenum Press, New York 1993, pp. 133-138.
  • 255. Friedl K.E., Vogel J.A., Marchitelli L.J., Kubel S.L., Assessment of regional body composition by dual-energy X-ray absorptiometry, in: Human Body Composition”, K.J. Ellis and J.D. Eastman (ed.), Plenum Press, New York 1993, pp. 285-288.
  • 256. Kotzki P.O., Mariano-Goulart D., Rossi M., Theoretical and experimental limits of triple photon energy absorptiometry in the measurement of bone mineral, Physics in Medicine and Biology, vol. 36, no 4 (1991) 429-437.
  • 257. Jonson R., Boss B., Hansson T., Triple-photon energy absorptiometry in the measurement of bone mineral, Acta Radiologica, vol. 25, no 4 (1988) 461-464.
  • 258. Swanpalmer J., Kullenberg R., Hansspn T., Measurement of bone mineral using multiple-energy X-ray absorptiometry, Phys. Med. Biol. 43 (1998) 379-387.
  • 259. Ling S.S., et al., The measurement of trabecular bone mineral density using coherent and Compton scattered photons in vivo, Medical Physics 9(2) (1982) 208-215.
  • 260. Cann Ch.E., Quantitative CT for Determination of Bone Mineral Density: A Review, Radiology, vol. 166, no 2 (1988) 509-522.
  • 261. Genant H.K., et al., Quantitative Computed Tomography in Assessment of Osteoporosis, Seminars in Nuclear Medicine, vol. 17, no 4, (1987) 316-333.
  • 262. Orphanoudakis S.C., et al., Bone Mineral Analysis Using Single-energy Computed Tomography, Investigative Radiology, vol. 14, no 2 (1979) 122-130.
  • 263. Kalender W.A., Klotz E., Suess C., Vertebral bone mineral analysis: an integrated approach with CT, Radiology 164 (1987) 419-423.
  • 264. Genant H., et al., Computed Tomagraphy, in: “Non-Invasive Measurements of Bone Mass and Their Clinical application”, Cohn S.H. (editor), CRC Press Inc. Boca Raton, Florida, 1981, pp. 122-147.
  • 265. Prevrhal S., Genent H.K., Quantitative Computertomographie, Radiologie, vol. 39 (1999) 194-202.
  • 266. Boonen S., et al., Factors Associated with Cortical and Trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the Ultradistal Radius in Aging Women, Calcified Tissue International, vol. 60 (1997) 164-170.
  • 267. Kroger H. et al., Bone Density Reduction in Various Measurement Sites in Men and Women with Osteoporotic Fractures of Spine and Hip: The European Quantitation of Osteoporosis Study, Calcified Tissue International, vol. 64 (1999) 191-199.
  • 268. Hosie C.J., Smith D.A.S., Precision of measurement of bone density with s special purpose computed tomography scanner, Br. J. Radiol. 59 (1986) 345-350.
  • 269. Fujita T., Fuji Y., Goto B., Measurement of Forearm Bone in children by Peripheral Computed tomography, Calcified Tissue International, vol. 64 (1999) 34-39.
  • 270. Webber C.E., Kennett T.J., Bone Density Measured by Photon Scattering. I. A System for Clinical Use, Physics in Medicine and Biology, vol. 21, no 5 (1976) 760-769.
  • 271. Hazan G., et al., The Early Detection of Osteoporosis by Compton Gamma Ray Spectroscopy, Physics in Medicine and Biology, vol. 22, no 6 (1977) 1073-1084.
  • 272. Leichter I., et al., The relative significance of trabecular and cortical bone density as a diagnostic index for osteoporosis, Physics in Medicine and Biology, vol. 32, no 9 (1987) 1167-1174.
  • 273. Roberts J.G., Di Tomasso E., Webber C.E., Photon Scattering Measurements of Calcaneal Bone Density: Results of in vivo Cross-Sectional Studies, Investigative Radiology, vol. 17, no 1 (1982) 20-28.
  • 274. Garnett E.s., Kennett T.J., Kenyon D.B., Webber C.E., A Photon Scattering Technique for the measurement of absolute bone density in man, Radiology 106 (1973) 209-216.
  • 275. Huddleston A.L., Bhaduri D., Compton Scatter Densitometry in cancellous Bone, Phys. Med. Biol. 24, no 2 (1979) 310-318.
  • 276. Ndbovu A.M., Farrell T.J., Webber C.E., Coherent scattering and bone mineral measurement: The dependence of sensitivity on angle and energy, Medical Physis, vol. 18, no 5, (1991) 985-989.
  • 277. Kerr S.A. et al., Coherent scattering and the assessment of mineral concentration in trabecular bone, Physics in Medicine and Biology, vol. 25, no 6 (1980) 1037-1047.
  • 278. Mossop J.R., Kerr S.A., Bradley D.A., Chong C.S., Ghose A.M., The use of cohherent gamma-ray scattering for the characterisation of metals, Nucl. Instr. Meth. A255 (1987) 419-422.
  • 279. Puumalainen P. et al., A new photon scattering method for bone mineral density measurement, Radiology, vol. 120 (1976) 723-724.
  • 280. Puumalainen P., Ollkonen H., Sikanen P., Assessment of Fat Content of Liver by a Photon Scattering Technique, International Journal of Applied Radiation and Isotopes, vol. 28 (1977) 785-787.
  • 281. Puumalainen P., Ollkonen H., Sikanen P., Measurement of stable iodine content of tissue by coherently and Compton scattered photons, Nuclear Instruments and Methods, vol. 163 (1979) 261-263.
  • 282. Nilsson U., Ahlgren L., Mattsson S., Coherent-to-Compton scattering ratio for trabecular bone mineral determination in the heel bone, Report MA RASFYS 94:04, Department of Radiation Physics, University Hospital, Malmo, Sweden (1994).
  • 283. Puumalainen P., et al., A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content, Physics in Medicine and Biology, vol. 27, no 3 (1982) 425-429.
  • 284. Gigante G.E., Scuti s., A large-angle coherent/Compton scattering method for measurement in vivo of trabecular bone mineral concentration, Medical Physics, vol. 12, no 3 (1985) 321-326.
  • 285. Greenfield M.A., Craven J.d., Shukla S.s., Bone Mineral Measurement using the Ratio of Coherent to Compton Scattered Photons in the Calcaneus, in: “Osteoporosis and Bone Mineral Measurement”, E.F. Ring, W.D. Morgan, A.S. Dixon (ed.), Institute of Physical Sciences in Medicine, York 1989, chapt. 14, 116-123.
  • 286. Shukla S.s., Leichter I., Karellas A., Craven J.D., Greenfield M., Trabecular Bone Mineral Density Measurement in Vivo: Use of the Ratio of Coherent to Compton-Scattered Photons on Calcaneus, Radiology 158 (1986) 695-697.
  • 287. White D.R., Martin R.J., Darlison R., Epoxy resin based tissue substitutes, British Journal of Radiology, vol. 50, no 599 (1977) 814-821.
  • 288. Jonson R., et al., In Vitro Studies of Accuracy and Precision During determination of the bone mineral content in the human spine using the attenuation of a continuous X-ray spectrum, in: In Vivo body composition studies”, K.J. Ellis, S. Yasumura, W.D. Morgan (ed.), Institute of Physical of Physical Sciences in Medicine, London 1987, chapt. 70, 446-451.
  • 289. White D.R., An analysis of the Z-dependencr of Photon and Electron Interactions, Physics in Medicine and biology, vol. 22, no 2, 1977, 219-228.
  • 290. White D.R., Tissue substitutes in experimental radiation physics, Medical physics, vol. 5, no 6 (1978) 467-479.
  • 291. Crawley E.O., Evans W.D., Owen G.M., A theoretical analysis of the accuracy of single-energy CT bone-mineral measurement, Physics in Medicine and Biology, vol. 33, no 10 (1988) 1113-1127.
  • 292. “Radiation Dosimetry: X-rays generated at potentials of 5 to 150 kV”, International Commission off Radiological Units, Report 17, Washington 1970.
  • 293. Woodard H.Q., White D.R., Bone models for use in radiotherapy dosimetry, British Journal of Radiology, vol. 55, no 652 (1982) 277-282.
  • 294. Woodard H.Q., The elemental composition of human cortical bone, Health Physics, vol. 8 (1962) 513-517.
  • 295. Zlokazov V.B., ACTIV – a program for automatic processing of gamma-ray spectra, Computer Physics Communications 28 (1982) 27-40.
  • 296. Winn W.G., GRABGAM: a gamma analysis code for ultra-low-level HPGe spectra, Nucl. Instr. Meth. A50 (2000) 430-440.
  • 297. Vekemans B., Janssens K., Vincze L., Adams F., Van Espen P., Analysis of X-ray Spectra by iterative least squares (AXIL): New developments, X-ray Spectrometry 23 (1994) 278-285.
  • 298. Tomasi D., Macchiavelli A.O., PCLOOK32: an interactive program for the analysis of spetra, Nucl. Instr. Meth 427 (1999) 583-586.
  • 299. Phillips G.W., Marlow K.W., Peak search and analysis of gamma-ray spectra with very low statistics, IEEE Trans. Nucl. Sci., Vol. NS-24, No 1 (1977) 145-157.
  • 300. Olmos P., et al., A new approach to automatic radiation spectrum analysis, IEEE Trans. Nucl. Sci., vol. 38, no 4 (1991) 971-975.
  • 301. Morales J., Navarro J., Plo M., Villar J.A., SANDRA, A precise and fast FORTAN program for gamma-ray spectrum analysis using a small computer, Nucl. Instr. Meth. 184 (1981) 509-513.
  • 302. Mariscotti M.A., A method for automatic identification of peaks in the presence of backround and its application to spectrum analysis, Nucl. Instr. Meth. 50 (1967) 309-320.
  • 303. Lauterjung J., Will G., Hinze E., A fully automatic peak-search program for the evaluation of Gauss-shaped diffraction patterns, Nucl. Instr. Meth. A239 (1985) 281-287.
  • 304. Zimmermann W., Evaluation of Photopeaks in scintillation Gamma-Ray Spectroscopy, Rev. Sci. Instr., vol. 32, no 9 (1961) 1063-1065.
  • 305. Baker S., Cousins R.D., Clarification of the use of chi-square and likelihood functions in fits to histograms, Nucl. Instr. Meth. 221 (1984) 437-442.
  • 306. Golub G.H., Van Loan C.F., “Matrix Computation”, The Johns Hopkins University Press, Baltimore, 1983.
  • 307. Hauschild T., Jenstschel M., Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments, Nucl. Instr. Meth. A457 (2001) 384-401.
  • 308. Moghell K.J., Parameter estimation in asytronomy with Poisson-distributed data, I. The Χ2 statistics, The Astronomical Journal 518 (1999) 380-393.
  • 309. Jading Y., Riisager K., Systematic errors in Χ2 – fitting of Poisson distribution, Nucl. Instr. Meth. A372 (1996) 289-292.
  • 310. Awaya T., a new method for curve fitting to the data with low statistics not using the Χ2 – method, Nucl. Instr. Meth. 165 (1979) 317-323.
  • 311. Almeida F.M.L., Barbi M., de Vale M.A.B., A proposal for a different chi-square function for poisson distribution, Nucl. Instr. Meth. A449 (2000) 383-395.
  • 312. Cash W., Parameter estimation in astronomy though application of the likelihood ratio, The Astrophysical Journal 228 (1979) 939-947.
  • 313. Foster J., Kouris K., Matthews I.O., Spyrou N.M., Binomial vs Poisson statistics in radiation studies, Nucl. Instr. Meth. 212 (1983) 301-305.
  • 314. Hannam M.D, Thompson W.J., Estimating small signals by using maximum likelihood and Poisson statistics, Nucl. Instr. Meth.A431 (1999) 239-251.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA2-0034-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.