PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody wnioskowania przybliżonego. Właściwości i zastosowanie

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Badanie właściwości metod wnioskowania przybliżonego jest trudne ze względu na ich liczbę i różnorodność. Dyskusję ograniczono do uogólnionych metod Mamdaniego, Larsena, Tsukamoto i Takagi-Sugeno. Uogólnienie dotyczy matematycznych operacji dogodnych do interpretacji spójników "and", "or", "also" stosowanych w regułach wnioskowania. Podano warunki konieczne, które powinny spełniać te operacje. Nową klasę operacji spełniających te warunki nazwano operacjami podstawowymi (B-operacjami) dla metod wnioskowania. Klasa ta jest szersza niż klasa norm trójkątnych. Specjalną uwagę poświęcono systemom sterowania. Przedstawiono rezultaty poprzednich badań autora i niektóre z nich uogólniono. Głównymi rezultatami teoretycznymi są twierdzenia o niezależności stanu ustalonego systemu ze sterownikami FPD, FPI, FPID od wyboru operacji wnioskowania, o ile zastosowano normy trójkątne lub B-operacje. Twierdzenia te uogólniono na systemy o wielu wyjściach i wejściach (MIMO). Badano ponadto dynamikę systemów. Pokazano, że odpowiedź skokowa zależy bardzo słabo od operacji wnioskowania dla szerokiej klasy operacji stosowanych do interpretacji "and", "or", "also". Zależy ona również słabo od doboru metody defuzzyfikacji. Wprowadzono nową koncepcję twierdzenia rozmytego. Sformułowano rozmyte twierdzenie o dynamice systemu ze sterownikiem rozmytym. W dalszej części pracy badano wpływ metod wnioskowania na modele rozmyte. Analizowano uogólnione modele typu Mamdaniego, Larsena i Takagi-Sugeno. Zaproponowano modyfikację modelu Takagi-Sugeno usuwającą jego niedokładność w strefach przejściowych, obserwowaną dla funkcji przynależności o kształcie trójkątów. W ostatniej części pracy przedstawiono rozmyto-probabilistyczno-ewidencyjny model procesu uszkodzeń elementu oraz przykład jego zastosowania do estymacji niezawodności kondensatorów. Ponadto podano przykłady przemysłowych zastosowań logiki rozmytej do analizy obrazów w metalurgii, do opisu procesu spiekania proszków żelaza oraz konstrukcji inteligentnego czujnika promieniowania podczerwonego z mikroprocesorem rozmytym.
EN
Investigation of approximate reasoning is difficult, because of the many very different reasoning methods. Thus, discussion is limited here to the generalized Mamdani, Larsen, Tsuka-moto, and Takagi-Sugeno methods. The generalization concerns mathematical operations which are suitable for the interpretation of the connectives "and", "or", "also" in reasoning rules. The necessary conditions for these operations are established. A new class of operations, satisfying these conditions, is called B-operations, basic operations for reasoning methods. This class is larger than triangular norms. Special attention was given to the fuzzy control system. Some results of the author's previous works is presented and some of them are generalized. The main theoretical results are theorems about the non-dependence of the steady state of the system with FPD, FPI, and FPID controllers on the choice of reasoning operations, if triangular norms or B-operations are used. These theorems were generalized for fuzzy multiple input multiple output (FMIMO) systems. Moreover, the dynamics of the systems were investigated. It was shown that system step res-ponse has a very weak dependence on the reasoning operation for large class of operations used for the interpretation of "and", "or", "also". There is also weak dependence of the dynamics on the choice of defuzzification method. A new concept of fuzzy theorem was introduced. A fuzzy theorem of system dynamics with fuzzy controller was formulated. In a further part of the work, the influence of reasoning methods on the fuzzy models was investigated. Generalized Mamdani, Larsen, and Takagi-Sugeno models were considered. A modification of the Takagi--Sugeno model is proposed to remove the defects of model nonaccuracy in intermediate areas if standard triangular shape of membership functions are used. In the last part of the work, a probabilistic-fuzzy-evidence model of failure process of the element is presented and an example of its application for the estimation of reliability of capacitors. Moreover, examples of industrial applications of fuzzy logie to the analysis of camera pictures in metallurgy, to the sintering process of iron powders, and intelligent sensor of infrared radiation with a fuzzy microprocessor are described.
Słowa kluczowe
Rocznik
Tom
Strony
3--117
Opis fizyczny
Bibliogr. 198 poz., rys., schem.
Twórcy
  • Instytut Systemów Elektronicznych Politechniki Warszawskiej
Bibliografia
  • 1. [a1] Agell N., Rovira R.: Symmetric difference operators for fuzzy sets. Fuzzy Sets and Systems, 1989, vol. 30, No 1, s. 5-10.
  • 2. [a2] Ajdukiewicz K.: Zarys logiki. PZWS, Warszawa 1956.
  • 3. [a3] Ali Y.M., Zhang L.: A methodology for fuzzy modeling of engineering systems. Fuzzy Sets and Systems, 2001, vol. 118, No 2, s. 181-197.
  • 4. [a4] Alquist J.E.: Application of fuzzy implication to probe nonsymmetric relations. Part I. Fuzzy Sets and Systems, 1987, vol. 22, s. 229-244.
  • 5. [a5] Alquist J.E.: Application of fuzzy implication to probe nonsymmetric relations. Part II. Fuzzy Sets and Systems, 1988, vol. 25, s. 87-95.
  • 6. [b1] Babuska R.: Construction of fuzzy systems – interplay between precision and transparency. European Symposium on Intelligent Technics (ESIT), 14-15 Sept. 2000, Aachen, Germany, s. 445-452.
  • 7. [b2] Baldwin J.F., Pilsworth B.W.: Axiomatic approach to implication for approximate reasoning with fuzzy logic. Fuzzy Sets and Systems, 1980, vol. 3, s. 193-219.
  • 8. [b3] Bandemer H., Gottwald S.: Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications, Wiley New York 1995.
  • 9. [b4] Batyrshin I., Kaynak O.: Parametric classes of generalized conjunction and disjunction operations for fuzzy modelling. IEEE Trans. on Fuzzy Systems, 1999, vol. 7, no 5, s. 586-596.
  • 10. [b5] Bellman R.E., Giertz M.: On the analytic formalism of the theory sets, Information Science, 1973, vol. 5, s. 149-157.
  • 11. [b6] Bellman R.E., Zadeh L.A.: Decision-making in fuzzy environment. Management Science, 1970, vol. 17, No 4, s. 141-164.
  • 12. [b7] Bloch I.: Information combination operators for data fusion: A comparative review with classification. IEEE Trans. on System, Man, and Cybern., 1996, vol. 26, No 1, s. 52-67.
  • 13. [b8] Bezdek J.C. (ed.): Special Issue: Fuzziness vs. probability – the nth round. IEEE Trans. on Fuzzy Systems, 1994, vol. 2, s. 1-42.
  • 14. [b9] Brae M., Rutherford D.A.: Selection of Parameters for Fuzzy Logic Controller. Fuzzy sets and Systems, 1979, vol. 2, No 3, s. 185-199.
  • 15. [b10] Brae M., Rutherford D.A.: Theoretical and linguistic aspects for the fuzzy logic controller. Automatica, 1979, vol. 15, no 5, s. 553-577.
  • 16. [b11] Butkiewicz B.S.: Estymacja parametrów niezawodnościowych systemu na podstawie wyników badań elementów. Prane Naukowe Politechniki Warszawskiej, z. 96, 1991, Wyd. Polit. Warszawskiej s. 1-135.
  • 17. [b12] Butkiewicz B.S.: Fuzzy Weibull distribution, its definition and application to reliability predictions. Proc. Nat. Conf. on Circuit Theory and Application, 1995, vol. 1, s. 183-188.
  • 18. [b13] Butkiewicz B.S.: Behaviour of fuzzy PD controller under different reasoning methods. Proc. of Int. Conf. on Soft Computing and Measurements, 1996, vol. 1, s. 250-259, St. Petersburg (Rosja) June 22-26.
  • 19. [b14] Butkiewicz B.S.: Position control systems with fuzzy microprocessor AL220. In: Computational Intelligence, Theory and Applications. Reush B. (red.), Lecture Notes in Computer Science, Springer Heidelberg 1997, vol. 1256, s. 74-81.
  • 20. [b15] Butkiewicz B.S.: Dynamic and steady-state behaviour of fuzzy PD controller under different reasoning and defuzzification methods. Proc. Polish-Czech-Hungarian Workshop on Circuit Theory, Budapest 1997.
  • 21. [b16] Butkiewicz B.S., Pogorzelska J.: Ocena degradacji kondensatorów ceramicznych za pomocą aparatu matematyki rozmytej. VI Kraj. Konf. Naukowa ELTE’97, Technologia Elektronowa, Krynica 1997, t. 1, s. 133-136.
  • 22. [b17] Butkiewicz B.S.: General fuzzy-probability approach to reliability of element. XX Nat. Conf. on circuit Theory and Applications, Kołobrzeg 1997, vol. 2, s. 313-318.
  • 23. [b18] Butkiewicz B.S.: Steady-state error of a system with fuzzy controller. IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics, 1998, vol. 28, No 6, s. 855-860.
  • 24. [b19] Butkiwicz B., Pogorzelska J.: Rozmyty model procesu spiekania. III Kraj. Konf. Nauk.-Tech. Diagnostyka Procesów Przemysłowych, Jurata 1998, s. 463-466.
  • 25. [b20] Butkiewicz B.S.: Rozmyta diagnostyka procesu spiekania. IV Kraj. Konf. Diagnostyka Techniczna Urządzeń i Systemów, Szczecin-Międzyzdroje-Ystad 1998, t. 2, ss. 67-72.
  • 26. [b21] Butkiewicz B.S., Mroczek T., Grzybek M.W.: Evaluation of characteristic temperatures of materials using an approximate reasoning method. In: Computational Intelligence Theory and Applications. B. Reusch (red.). Lecture Notes in computer Science, vol. 1625, Springer, Heidelberg 1999, s. 569-577.
  • 27. [b22] Butkiewicz B.S.: Fuzzy System with B-operations. Proc. 5th Conf. Neural Network and Soft Computing, Zakopane 2000, s. 290-295.
  • 28. [b23] Butkiewicz B.S.: Properties of Fuzzy System with PID Controller and different Reasoning Methods, Mendel 2000 6th Int. Conf. in soft Computing, Brno 2000, s. 243-248.
  • 29. [b24] Butkiewicz B.S.: System with hybrid fuzzy-conventional PID controller. 2000 IEEE Int. Conf. on System, Man and Cybernetics, Nashville (USA), s. 3705-3709.
  • 30. [b25] Butkiewicz B.S.: About robustness of fuzzy logic PD and PID controller under changes of reasoning methods. European Symposium on Intelligent Technics (ESIT), Aachen, (Germany), 14-15 Sept. 2000, s. 350-356.
  • 31. [b26] Butkiewicz B.S.: About MIMO system with fuzzy inference. IFSA World Congress/NAFIPS Int. Conf. Vancouver 2001.
  • 32. [b27] Butkiewicz B.S.: System sterowania rozmytego z normami trójkątnymi w warunkach granicznych. Pomiary, Automatyka, Kontrola, 2001, no 4, s. 11-13.
  • 33. [b28] Butkiewicz B.S.: Fuzzy theorem about dynamic of a system with fuzzy controller. Zgłoszenie do International Journal of Information Science.
  • 34. [b29] Butkiewicz B.S.: Fuzzy control systems with B-operations. In: Advances in Soft Computing. Developments in Soft Computing, John R., Birkenhead R. (red.) Physica-Verlag, Springer, Heidelberg 2001, s. 48-55.
  • 35. [b30] Butkiewicz B., Golovchak R., Kovalskiy A., Shotyuk O., Vakiv M.: On the problem of relaxation for radiation-induced optical effects in some ternary chalcogenide glasses. Radiation Effects and Defects in Solids, 2000, vol. 153.
  • 36. [b31] Butnariu D., Klement E.P., Zafrany S.: On triangular norm-based propositional fuzzy logics. Fuzzy Sets and Systems, 1995, vol. 69, No 2, s. 241-255.
  • 37. [c1] Cai K.Y.: Introduction to fuzzy reliability. Kluwer Acad. Publ., Dordrecht 1996.
  • 38. [c2] Cao Z., Kandel A.: Applicability of some fuzzy implication operators. Fuzzy Sets and Systems, 1989, vol. 31, s. 151-186.
  • 39. [c3] Cao Z., Kandel A., Li L.: A new model of fuzzy reasoning. Fuzzy sets and systems, 1990, vol. 36, no 3, 311-326.
  • 40. [c4] Chang S.S.: Fuzzy dynamic programming and decision making process. Proc. 3rd Princeton Conf. on Information Sciences and Systems, 10969, s. 200-203.
  • 41. [c5] Chang C.L.: Fuzzy topological spaces. Jour. Math. Analysis and Appl., 1968, vol. 24, s. 182-190.
  • 42. [c6] Chen S.M.: Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets and Systems, 1993, No 56, s. 29-35.
  • 43. [c7] Chen C.-L., Chen P.-C., Chen C.-K.: Analysis and design of fuzzy control system. Fuzzy Sets and Systems, 1993, No 57, s. 125-140.
  • 44. [c8] Chen S.M., Hsiao W.H.: Bidirectional approximate for rule-based systems using internal-valued fuzzy sets. Fuzzy Sets and Systems, 2000, vol. 113, No 2, s. 185-203.
  • 45. [c9] Chen C.-L., Wang S.-N., Hsich C.-T., Chang F.-Y.: Theoretical analysis of crips-type fuzzy logic controllers using various t-norm sum-gravity inference methods, IEEE Trans. on fuzzy systems, 2001, vol. 6, No 1, s. 122-136.
  • 46. [c10] Czogała E., Łęski J.: On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules. . Fuzzy Sets and Systems, 2001, vol. 117, No 2, s. 279-296.
  • 47. [c11] Czogała E., Pedrycz W.: Elementy i metody teorii zbirów rozmytych. PWN, Warszawa 1985.
  • 48. [c12] Czogała E., Pedrycz W.: On identification in fuzzy systems and its applications in control problem. Fuzzy Sets and Systems, 1981, vol. 6, s. 73-83.
  • 49. [d1] Dempster A.P.: Upper and lower probabilities induced by multivalued mapping. Ann. Math. Statistics, 1967, vol. 38, s. 325-339.
  • 50. [d2] Driankov D., Hellendoorn H., Reinfrank M.: Wprowadzenie do sterowania rozmytego, WNT, Warszawa 1996.
  • 51. [d3] Dubois D., Prade H.: Operation on fuzzy numbers. Int. Journ Systems Sci., 1978, vol. 9, s. 613-626.
  • 52. [d4] Dubois D., Prade H.: Fuzzy Sets and Systems Theory and Applications. Academic Press, New York 1980.
  • 53. [d5] Dubois D., Prade H.: Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems, 1983, vol. 10, s. 15-20.
  • 54. [d6] Dubois D., Prade H.: Semantic considerations on orders of magnitude reasoning. In: Decision support Systems and Qualitative Reasoning. Singh M.G., Trave-Massuyes L. (red.), North-Holland Publ., Amsterdam, 1991, s. 223-228.
  • 55. [d7] Dubois D., Prade H.: Fuzzy riles in knowledge-based system – Modelling gradedness, uncertainty and preference. In: An Introduction to fuzzy Logic Applications on Intelligent Systems. Yager R.R., Zadeh L.A., (red.), Kluwer Akademic Press, Dordrecht, 1992, s. 45-68.
  • 56. [d8] Dubois D., Grabisch M., Prade H.: Gradual rules and approximation of control laws. In: Theoretical Aspects of Fuzzy Control. Nguyen H.T. et al. (red.), Wiley, New York 1994.
  • 57. [d9] Dubois D., Lang J., Prade H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming. Gabbay D.M. et al. (red). Clarendon Press, Oxford, 1994, s. 439-513.
  • 58. [d10] Dubois D., Prade H.: Fuzzy sets in approximate reasoning: a personal view. In: Fuzzy logic Implementation and Applications. Patyra M.J., Mlynek D.M. (red.), Wiley, New York 1996.
  • 59. [d11] Dubois D., Prade H.: Order-of-magnitude reasoning with relation. Revue d’Intelligence Artificielle, 1998, vol. 3, s. 69-94.
  • 60. [d12] Dujet Ch., Vincent N.: Force implication: A new approach to human reasoning. Fuzzy Sets and Systems, 1995, vol. 69, No 1, s. 53-63.
  • 61. [d13] Dyckhoff H., Pedrycz W.: Generalized means as model of compensative connectives. Fuzzy Sets and Systems, 1984, vol. 14, s. 143-154.
  • 62. [e1] Emami M.R., Turksen I.B., Goldenberg A.A.: Development of a systematic methodology of fuzzy modelling. IEEE Trans. on fuzzy Systems, Aug. 1998, vol. 6, No 3, s. 346-361.
  • 63. [e2] Emami M.R., Turksen I.B., Goldenberg A.A.: A unified parameterized formulation of reasoning in fuzzy modelling and control. Fuzzy Sets and Systems, 1999, vol. 108, No 1, s. 59-81.
  • 64. [f1] Filev D., Yager R.R.: A general defuzzification method under BAD distributions, Int. J. Intelligent Systems, 1991, vol. 6, s. 687-697.
  • 65. [f2] Filev D.P., Yager R.R.: Three models of fuzzy logic controllers. Cybernetics and Systems, 1993, vol. 24, s. 91-114.
  • 66. [f3] Fodor J.C.: On fuzzy implication operators. Fuzzy Sets and Systems, 1991, vol. 42, No 2, s. 293-300.
  • 67. [f4] Fodor J.C.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets and Systems, 1995, vol. 69, s. 141-156.
  • 68. [f5] Fukami S., Mizumoto M., Tanaka K.: Some considerations on fuzzy conditional inference. Fuzzy Sets and Systems, 1980, vol. 4, s. 243-273.
  • 69. [g1] Gaines B.R.: Foundation of fuzzy reasoning. Int. Journ. Man-Machine Stud., 1976, vol. 8, s. 623-668.
  • 70. [g2] Goguen J.A.: The logic of inexact concepts. Synthese, 1969, vol. 19, s. 325-373.
  • 71. [g3] Gonzales L., Martin A.: Extending fuzzy relations. Fuzzy Sets and Systems, 1995, vol. 69, s. 157-169.
  • 72. [g4] Gorzałczany M.B.: An Interval-valued fuzzy inference method – some basic properties. Fuzzy Sets and Systems, 1989, vol. 31, No 2, s. 243-251.
  • 73. [g5] Grauel A., Ludwig L.A., Klene G.: Comparison of different intelligent methods for process and quality monitoring. Int. Journ. Of Approximate Reasoning, 1997, vol. 16, No 1.
  • 74. [g6] Gupta M.M., Qi J.: Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems, 1991, vol. 40, No 3, s. 431-450.
  • 75. [g7] Gupta M.M., Qi J.: Desing of fuzzy logic controllers based on generalized T-operations. Fuzzy Sets and Systems, 1991, vol. 40, No 3, s. 473-489.
  • 76. [g8] Gupta M., Ragade R.K., Yager R.R.: Advances in fuzzy set theory and applications. North-Holland, New York 1979.
  • 77. [g9] Gupta M.M., Saridis G.N., Gaines B.R.: Fuzzy Automata and Decision Processes. North-Holland, New York 1997.
  • 78. [h1] Hamacher H.: On logical connectives of fuzzy statements and their affiliated truth functions. Proc. 3rd European Meeting on Cybernetics and System Research, Vienne 1976.
  • 79. [h2] Hamacher H.: Uber logishe Aggregationen nicht – binar explizierter Entscheidungs-kriterien”. Rita G. Fisher Verlag, Frankfurt/Main 1978.
  • 80. [h3] Hall L.: The choice of ply operator in fuzzy intelligent systems. Fuzzy Sets and Systems, 1990, vol. 34, s. 135-144.
  • 81. [h4] Hrynkieiwcz O.: Estimation of life with fuzzy prior information – reliability prediction. First Joint IFSA-EC and Euro-WG Workshop on Progress in Fuzzy Sets in Europe, Prace IBS PAN, 1988, No 167.
  • 82. [h5] Hwang R.-C., Huang H.-C., Chi W.-S.: A new fuzzy PID-like controller. 2000 IEEE Int. Conf. on system, Man, and Cybernetics, Nashville (USA), s. 3629-3634.
  • 83. [j1] Johansen T.A., Shorten R., Murray-Smith R.: On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. on Fuzzy Systems, 2000, vol. 8, No 3, s. 297-313.
  • 84. [k1] Kacprzyk J.: Zbiory rozmyte w analizie systemów. PWN, Warszawa 1986.
  • 85. [k2] Kacprzyk J.: Multistage Fuzzy Control. Wiley, Baffins Lane 1997.
  • 86. [k3] Kacprzyk J.: Decision processes in fuzzy environment: a survey. In: Fuzzy Information and Decision Processes. Gupta M.M., Snachez E. (red.), North-Holland, Amsterdam 1982, s. 251-263.
  • 87. [k4] Kacprzyk J.: Multistage Decision-Making under Fuzziness. Verlag TUV Rheinland, Cologgne 1983.
  • 88. [k5] Kandel A., Lee S.C: Fuzzy switching and automata Theory and applications. New York 1979.
  • 89. [k6] Kandel A., Fridman M.: Defuzzification using most typical values. IEEE Trans. Systems, Man and Cybern., Part B: Cybern., 1998, vol. 28, No 6, s. 901-906.
  • 90. [k7] Kaufmann A.: Introduction a la theorie des Sous-ensembles Flous. Tome 1. Elements theorique de base. Tome 2. Langage, semantique et logique. Tom 3. Classification et reconnaissance des forms – Automates. Mechines de Turing – Problemes multi-criteres – systems. Introduction to the Theory of Fuzzy Subsets, vol. 1, Academic Press, New York 1975.
  • 91. [k8] Kaufman A., Gupta M.M.: Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrad Reinhold, New York 1991.
  • 92. [k9] Kickert W.J., Van Nauta Lemke H.R.: Application of a Fuzzy Controller in a Warm Water Plant. Automat., 1976, vol. 12, no 4, s. 301-308.
  • 93. [k10] Kim E., Kohout L.J.: Generalized morphisms, a new tool for comparative evaluation of performance of fuzzy implications, t-norms and co-norms in relational knowledge elicitation. Fuzzy Sets and Systems, 2001, vol. 117, No 2, s. 297-315.
  • 94. [k11] Kiszka J.B., Gupta M.M., Trojan G.M.: Multivariable fuzzy controller under Godel’s implication. Fuzzy Sets and Systems, 1990, vol. 34, No 3, s. 301-321.
  • 95. [k12] Klir G., Folger T.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Engllewood Clifs (NJ) 1988.
  • 96. [k13] Kosiński W., Weigl M.: General mapping approximation problem solving by neural and fuzzy inference network. System Analysis Modelling Simulation, 1998, vol. 30, No 1-2, s. 11-28.
  • 97. [k14] Kosko B.: Fuzzy systems as universal approximators. Proc. IEEE Intern. Conf. on Fuzzy Systems, San Diego 1992, s. 1153-1162.
  • 98. [k15] Kuncheva L.I.: How good are fuzzy if-then classifiers. Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000, vol. 30, s. 501-509.
  • 99. [l1] Larsen P.M.: Industrial applications of fuzzy logic control. Int. J. Man Machine Studies, 1980, vol. 12, No 1, s. 3-10.
  • 100. [l2] Lazzerini B., Marcelloni F.: Reducing computation overhead in MISO fuzzy systems. Fuzzy Sets and Systems, 2000, vol. 113, No 3, s. 485-496.
  • 101. [l3] Lee C.C.: Fuzzy logic in control systems: Fuzzy logic controller. Part 1. Part 2. IEEE Trans. Syst. Man Cybern., 1990, vol. 20, No 2, s. 404-418, 419-435.
  • 102. [l4] Lee E.S., Zhu Q.: Fuzzy and evidence reasoning. Physica-Verlag, Heidelberg 1995.
  • 103. [l5] Li W.: Desing of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. IEEE Trans. on Fuzzy System, 2000, vol. 6, No 4, s. 449-463.
  • 104. [l6] Li Y.-M., shi Z.-K.: Remarks on uninorm aggregation operators. Fuzzy Sets and Systems, 2000, vol. 114, 377-380.
  • 105. [ł1] Łukasieiwcz J., Tarski A.: Untersuchungen Uber den Aussagenkalkul. Comptes Rendus soc. SDci. Et Lettr. Varsovie, 1930, cl. III, vol. 23, s. 30-50.
  • 106. [ł2] Łukasieiwcz J.: Selected works. Borkowski L. (red.), North-Holland, Amsterdam 1970.
  • 107. [m1] Mac Vicar-Whelan P.J.: Fuzzy sets for man-machine interaction. Int. J. Man-Mach. Studies, 1976, vol. 8, s. 687-697.
  • 108. [m2] Mandani E.H.: Application of fuzzy algorithm for control of simple dynamic plant. Proc. IEE, 1974, vol. 121, No 12, s. 1585-1588.
  • 109. [m3] Marks II R.J. (red.): Fuzzy Logic Technology and Applications. The IEEE, Inc., New York 1994.
  • 110. [m4] Mayeda M., Murakami S.: A self-tuning fuzzy controller. Fuzzy Sets and Systems, 1992, vol. 51, s. 29-40.
  • 111. [m5] Menger K.: Statistical metric spaces. Proc. Nat. Acad. Sci. USA, vol. 28, 1942, s. 535-537.
  • 112. [m6] Military Handbook MIL-HDBK 217 f. USA Department of Defence, Griffiss Air Force Base (NY) 1995.
  • 113. [m7] Mizumoto M., Fukami S., Tanaka K.: Some methods of fuzzy reasoning. In: [g9], 1979, s. 117-136
  • 114. [m8] Mizumoto M., Tanaka K.: Some properties of fuzzy numbers. In: Advances in Fuzzy Set Theory and Applications. Gupta M.M., Ragade R.K., Yager R.R. (red.), North-Holland New York 1979.
  • 115. [m9] Mizumoto M.: Note on the arithmetic rule by Zadech for fuzzy conditional inference. Cybern. Syst., 1981, vol. 12, s. 247-306.
  • 116. [m10] Mizumoto M.: Comparison of various fuzzy reasoning methods. Proc. 2nd Int. Fuzzy Syst. Assoc. Congress, (IFSA), Tokyo, July 1987, s. 2-7.
  • 117. [m11] Mizumoto M.: Fuzzy controls under various approximate reasoning methods. . Proc. 2nd IFSA Congress, Tokyo, July 1987, s. 143-146.
  • 118. [m12] Mizumoto M.: Improvement of fuzzy control methods. In: Fuzzy Logic and Intelligent Systems. Li H., Gupta M.M., (red.) s. 1-16, Kluwer Acad. Publ., Dordrecht. 1995.
  • 119. [m13] Moon B.S.: Equivalence between fuzzy logic controllers and PI controllers for single input systems. Fuzzy Sets and Systems, 1995, vol. 69, No 2, s. 105-113.
  • 120. [o1] Onisawa S.M., Kacprzyk J. (red.): Reliability and safety analysis under fuzziness. Physica-Verlag, Heidelberg 1995.
  • 121. [p1] Pawlak Z.: Knowledge and Uncertainty a Rough Set Approach. In: Alagar V.S., Bergler S., Dong F.Q. (red.): Incompleteness and Uncertainty in Information Systems, Springer, Montreal 1993.
  • 122. [p2] Pedrycz W.: Identification in fuzzy systems. IEEE Trans. on Fuzzy Systems, 1984, vol. 14, s. 361-366.
  • 123. [p3] Pedrycz W.: On identification algorithm in fuzzy relational systems. Fuzzy Sets and Systems, 1984, vol. 13, s. 153-167.
  • 124. [p4] Pedrycz W.: Construction of fuzzy relational models. In: Proceedings of Cybernetics and Systems Research, Trappl R. (red.), North-Holland, Amsterdam 1984, s. 545-549.
  • 125. [p5] Pedrycz W.: Design of fuzzy algorithms with the aid of fuzzy models. In: Industrial Applications of Fuzzy Control. Sugeno M. (red.), North-Holland, Amsterdam 1985, s. 153-173.
  • 126. [p6] Pedrycz W.: Structured fuzzy models. Cybernetics and Systems, 1986, vol. 16, s. 108-117.
  • 127. [p7] Pedrycz W.: Fuzzy Control and Fuzzy Systems. Wiley, New York 1993.
  • 128. [p8] Pedrycz W. (red.): Fuzzy Modelling Paradigms and Practice. Kluwer Acad. Publ., Boston 1996.
  • 129. [p9] Pogorzelska J., Butkiewicz B.S.: A fuzzy model of degradation process and parametric failures of ceramic. Int. Conf. on Electronic Ceramics and Applications, ELECTROCERAMICS V, Aveiro (Portugal) 1998, s. 97-100.
  • 130. [p10] Procyk T.J., Mamdani E.H.: A Linguistic Self-Organizing Process Controller. Automatica, 1979, vol. 15, s. 15-30.
  • 131. [r1] Rasiowa H.: Wstęp do matematyki współczesnej. PWN, Warszawa 1971.
  • 132. [r2] Rasiowa H., Sikorski R.: The mathematics of metamathematics. PWN, Warszawa 1970.
  • 133. [r3] Ruan D., Kerre.: On the estimation of the compositional rule of inference. Int. Journ. Intell. Systems, 1993, vol. 8, s. 807-817.
  • 134. [r4] Rudas I.J., Kaynak M.O.: Minimum and maximum fuzziness generalized operators. Fuzzy Sets and Systems, 1998, vol. 98, No 1, s. 83-94.
  • 135. [s1] Sanchez E.: Resolution of composite fuzzy relation equations. Inform. and Control. 1976, vol. 30, s. 38-48.
  • 136. [s2] Scheider M., Shnaider E., Kandel A.: Application of the negation operator in fuzzy production rules. Fuzzy Sets and Systems, 1990, vol. 34, No 2, s. 293-299.
  • 137. [s3] Schwartz D.G.: Fuzzy inference in a formal theory of semantic equivalence. Fuzzy Sets and Systems, 1989, vol. 31, s. 205-216.
  • 138. [s4] Schweizer B., Sklar A.: Statistical metric spaces. Pacifc. J. Math., 1960, No 10, s. 313-334.
  • 139. [s5] Shafer G.: The mathematical theory of evidence. Princeton Univol. Press, Princeton (NJ) 1976.
  • 140. [s6] Shannon c.: The mathematical theory of communication. Bell system Tech. J., vol. 27, s. 379-423. Także: The Univ. of Illinois Press, Urbana 1949.
  • 141. [s7] Siler W., Ying H.: Fuzzy control theory: the linear case. Fuzzy Sets and Systems, 1989, vol. 33, s. 275-290.
  • 142. [s8] Stamou B., Tzafestas S.: Fuzzy Relations and Fuzzy Inference systems: An Inside approach. IEEE Trans. on systems, Man, and Cybernetics, Part B, 1999, vol. 29, No 6, s. 694-702.
  • 143. [s9] Sudkamp T.: On probability-possibility transformations. Fuzzy Sets and Systems, 1992, vol. 51, s. 73-81.
  • 144. [s10] Sugeno M.: Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo, Inst. Of Technol., 1974.
  • 145. [s11] Sugeno M.: Application of Fuzzy Set and ;logic to control Measurement and Control, 1975, vol. 18, No 2, s. 150-160.
  • 146. [s12] Sugeno M.: Fuzzy measures and fuzzy integrals – a survey. In: Fuzzy Automata and Decision Processed. Gupta M.M. et al. (red.), North-holland, New Tork 1977, s. 89-102.
  • 147. [s13] Sugeno M., Kang G.T.: Structure Identification of Fuzzy Model. Fuzzy Sets and Systems, 1988, vol. 28, s. 15-33.
  • 148. [t1] Takagi T., Sugeno M.: Derivation of fuzzy control rules from human operator’s control syste,. Proc. of the IFAC Symp. On Fuzzy Information, Knowledge Representation and Decision Analysis, Marseilles (France), July 1983, s. 55-60.
  • 149. [t2] Takagi T., Sugeno M.: Fuzzy Identification of Systems and its Application to Modelling and Control. IEEE Trans. on systems, Man, and Cybernetics, 10985, vol. 15, No 1, s;. 116-132.
  • 150. [t3] Thiele H.: On algebraic foundations of information granulation III investigating the Hata-Mukaidono approach. 2000 IEEE Int. Conf. on systems, Man, and Cybernetics, Nashville (USA), s. 133-138.
  • 151. [t4] Tong. R.M.: Synthesis of fuzzy models for industrial processes-some results. Int. journal of General Systems, 1978, vol. 4, 143-163.
  • 152. [t5] Tong. R.M.: The construction and evaluation of fuzzy models. In: Advances in Fuzzy Set Theory and Applications. Grupa M.M., Ragade R.K., Yager R.R., (red.), North-Holland, Amsterdam 1979, s. 559-576.
  • 153. [t6] Tong. R.M.: The evaluation of fuzzy models derived from experimental data. Fuzzy Sets and Systems, 1980, vol. 4, No 1, s. 1-12.
  • 154. [t7] Tsukamoto Y.: An approach to fuzzy reasoning method. In: Fuzzy Set Theory and Applications. Gupta M.M., Ragade R.K., Yager R.R., (red.), Amsterdam, North-Holland 1979.
  • 155. [t8] Turksen I.B., Kandel A., Zhang T.-Q.: Normal forms of fuzzy middle and fuzzy contradictions. IEEE Trans. system, Man, and Cybern., Part B: Cybern., 1999, vol. 29, No 2, s. 237-253.
  • 156. [u1] Uechara K., Fujise M.: Fuzzy inference based on families of α-level sets, IEEE Trans. on Fuzzy Sets, 1993, vol. 1, No 2, s. 111-124.
  • 157. [w1] Wang G., Zhang Y.: The theory of fuzzy stochastic processes. Fuzzy Sets and Systems, 1992, vol. 51, s. 161-178.
  • 158. [w2] Wang L.X.: Fuzzy systems are universal approximators. Proc. IEEE Int. Conf. on Fuzzy Systems, s. 1163-1169, San Diego (CA) 1992.
  • 159. [w3] Weber S.: A general concept of fuzzy connectives, negation, and implication based on t-norms and t-conorms. Fuzzy Sets and Systems, 1983, vol. 11, s. 115-134.
  • 160. [w4] Willaeys D., Malvache N.: Utilization of Fuzzy Sets for Systems Modelling and Control. IEEE Conf. on Decision and Control, New Orleans, December 1977.
  • 161. [w5] Willaeys D., Malvache N.: Contribution of the Fuzzy Set Theory to Man-Machine System. In: Advances in Fuzzy Set Theory and Applications. Gupta M.M., Ragade R.K., Yager R.R.: (red.), North-Holland Publ., Amsterdam 1979, s. 481-500.
  • 162. [y1] Yager R.R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems, 1980, vol. 4, s. 235-242.
  • 163. [y2] Yager R.R.: Entropy and specificity in a mathematical theory of evidence. Int. Journ. General Systems, 1983, No 9, s. 249-260.
  • 164. [y3] Yager R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Systems, Man, and Cybern., 1988, vol. 18, s. 183-190.
  • 165. [y4] Yager R.R.: Connectives and quantifiers in fuzzy sets. Fuzzy Sets and Systems, 1991, vol. 40, No 1, s. 39-75.
  • 166. [y5] Yager R.R.: A general approach to rule aggregation in fuzzy logic control. Applied Intelligence, 1992, vol. 2, s. 333-351.
  • 167. [y6] Yager R.R.: Three models of fuzzy logic controllers. Cybernetics and Systems, 1993, vol. 24, s. 91-114.
  • 168. [y7] Yager R.R.: On the interpretation of fuzzy if-then rules. Applied Intelligence, 1996, vol. 6, s. 141-151.
  • 169. [y8] Yager R.R., Filev D.P.: Induced order weighted averaging operators, IEEE Trans. System, Man, and Cybern. Part B: Cybern., 1999, vol. 29, no 2, s. 141-150.
  • 170. [y9] Yager R.R., Filev D.: SLIDE: A simple adaptive defuzzification method. IEEE Trans. on Fuzzy Systems, 1993, vol. 1, s. 69-78.
  • 171. [y10] Yager R.R., Filev D.P.: Podstawy modelowania I sterowania rozmytego. WNT, Warszawa 1996.
  • 172. [y11] Yager R.R., Kacprzyk J.: The ordered weighted averaging operators: theory and applications. Kluwer Acad. Publ., Norwell (MA, USA) 1997.
  • 173. [y12] Yager R.R., Ovchinnikov S., Tong R.M., Nguyen H.T. (red.): Fuzzy Sets and Applications: selected papers by L.A. Zadeh. Wiley, New York 1987.
  • 174. [y13] Yager R.R., Rybalov A.: Full reinforcement operators in aggregation techniques. IEEE Trans. System, Man, and Cybern. Part B: Cybern., 1998, vol. 28, No 6, s. 757-769.
  • 175. [y14] Yamazaki T., Sugeno M.: A Microprocessor Based Fuzzy controller for Industrial Purposes. In: Industrial Applications of fuzzy Control. Sugeno M. (red.), North-Holland, Amsterdam 1985, s. 231-240.
  • 176. [y15] Yasonbu S., Miyamoto S.: Automatic train operation system by predictive fuzzy controller. In: Industrial Applications of fuzzy control. Sugeno M. (red.), North-Holland, Amsterdam 1985, s. 1-18.
  • 177. [y16] Ying M.S.: Pertubation of Fuzzy Reasoning. IEEE Trans. on fuzzy Systems, 1999, vol. 7, No 5, s. 625-629.
  • 178. [y17] Ying M.S.: Some notes on multidimensional fuzzy reasoning. Cybern. Syst., 1988, vol. 19, s. 281-293.
  • 179. [y18] Ying H., Ding Y., Li S., Shao S.: Comparison of necessary conditions for typical Takagi-Sugeno and Mandami Fuzzy system as universal approximators. IEEE Trans. on Systems, Man, and Cybernetics, Part A: systems and Humans, 1999, vol. 29, no 5, s. 508-514.
  • 180. [z1] Zadeh L.A.: Fuzzy sets. Memo. ERL, no 64-44 Univol. Of California, Berkeley 1964, również w : Inf. & Control, 1965, vol. 8, s. 338-353.
  • 181. [z2] Zadeh L.A.: Probability measures of fuzzy events. J. Math. Analysis and Applic. 1998, vol. 10, s. 421-427.
  • 182. [z3] Zadeh L.A.: Fuzzy languages and their relations to human and machine intelligence. Proc. conf. on Man and Computer, Bordeaux 1970. Również w : Memo. M-302, electronics Research Laboratory, Univ. of California, Berkeley 1971.
  • 183. [z4] Zadeh L.A.: Toward a theory of fuzzy systems. In: Aspects of Network and System Theory. Kalman R.E., De Claris N. (red.), Holt, Rinechart and Winston, New York 1971, s. 469-490.
  • 184. [z5] Zadeh L.A.: Similarity relations and fuzzy orderings. Information Science, 1971, vol. 3, s. 177-200.
  • 185. [z6] Zadeh L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Syst. Man Cybern., 1973, vol. 3, s. 28-44.
  • 186. [z7] Zadeh L.A., Fu k-S., Tanaka K., Shimura M.: Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic Press, 1975.
  • 187. [z8] Zadeh L.A.: The concept of a linguistic variable and its application to approximate reasoning. Parts 1,2 and 3. Information Sci., vol. 8, s. 199-249, 1975, vol. 8, s. 301-357, vol. 9, s. 43-80.
  • 188. [z9] Zadeh L.A.: Calculus of fuzzy restrictions. In: [z7], s. 1-39, 1975.
  • 189. [z10] Zadeh L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, vol. 1, s. 3-28.
  • 190. [z11] Zadeh L.A.: PRUF – a meaning representation langue for natural languages. Int. Journ. Man-Machine Studies, 1978, vol. 10, s. 395-460.
  • 191. [z12] Zadeh L.A.: PRUF – A meaning representation langue for natural languages. Int. Journ. Man-Machine Studies, 1978, vol. 10, s. 395-460.
  • 192. [z13] Zadeh L.A.: A theory of approximate reasoning. In: Machine Intelligence. Hayes J.E., Michine D., Mikulich L.I. (red.), Ellis Horwood/John Wiley, New York, 1979, s. 149-196.
  • 193. [z14] Zadeh L.A.: Test-score semantics for natural languages and meaning representation via PRUF. In: Empirical Semantics. I. Rieger B. (red.), Brockmayer, Bohum 1981, s. 281-349.
  • 194. [z15] Zadeh L.A.: Possibility theory as a basis for representation of meaning. In: Sprache und Ontologie, Akten 6, Inter. Wittgenstein Symp. Kirchberg/Wechsel, Holder-Pichler-Tempsky, wien 1982, s. 253-262.
  • 195. [z16] Zadeh L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems, 1983, vol. 11, s. 199-227.
  • 196. [z17] Zadeh L.A.: A Theory of Commonsense Knowledge. In: Fuzzy Sets and Applications: Selected papers by L. Zadeh. Yager and alt. (red.), Wiley, New York 1987.
  • 197. [z18] Zadeh L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 1997, vol. 90, No 1.
  • 198. [z19] Zimmerman H.J.: Fuzzy Set Theory and its Applications. Kluwer-Hijhoff Publ., Boston 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA2-0030-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.