Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a topological locally compact group (abelian or not) endowed with a left Haar measure and a left translation-invariant and strongly continuous strict partial ordering -< . We consider a positive finite measure v on G, such that this order is v-separable. Then, we associate to each positive relatively invariant measure A on G a class of continuous numerical representations for the order -< .
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
865--871
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Département de Mathématiques, Université Cadi Ayyad, Faculté Des Sciences-Semlalia D E Marrakech, Avenue du Prince My. Abdellah. B.P. 2390, 40.000. Marrakech. Maroc (Morocco)
Bibliografia
- [1] J. C. Candeal and E. Indurain, Utility functions on partially ordered topological groups, Proc. Amer. Math. Soc. Vol. 115, No. 3 (1992), 765-767.
- [2] J. C. Candeal and E. Indurain, Utility representations from the concept of measure, Math. Social Sei. 26 (1993), 51-62.
- [3] G. Cantor, Beiträge zur begründung der transfinite Mengenlehre I, Math. Ann. 46 (1895), 481-512.
- [4] G. Cantor, Beiträge zur begründung der transfinite Mengenlehre II, Math. Ann. 49 (1897), 207-246.
- [5] G. Chichilnisky, Spaces of economic agents, J. Econom. Theory 15 (1977), 160-173.
- [6] G. Chichilnisky, Continuous representations of preferences, Rev. Econom. Stud. 47 (1980), 959-963.
- [7] G. Debreu, Representation of a Preference Ordering by a Numerical Function, in: R. M. Thrall et al.eds., Decision Processes, Wiley, New York, 1954.
- [8] G. Debreu, Theory of Value, Wiley, New York, 1959.
- [9] S. Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39-45.
- [10] P. C. Fishburn, Utility Functions for Decision Making, John Wiley, New York, 1970.
- [11] I. Fleischer, Numerical representation of utility, J. Soc. Ind. Appl. Math., (S.I.A.M) 9 (1961), 48-50.
- [12] G. Herden, On the existence of utility functions I, Math. Social Sci. 17 (1989), 297-313.
- [13] G. Herden, On the existence of utility functions II, Math. Social Sci. 18 (1989), 107-117.
- [14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin, 1979.
- [15] J. Y. Jaffray, Existence of a continuous utility functions: an elementary proof, Econometrica 43 (1975), 981-983.
- [16] L. H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., 1953.
- [17] G. Mehta, Continuous utility functions, Econom. Lett. 18 (1985), 113-115.
- [18] G. Mehta, Existence of an order-preserving function on normally preordered spaces, Bull. Austral. Math. Soc. 34 (1986), 141-147.
- [19] G. Mehta, On a theorem of Fleischer, J. Austral. Math. Soc. 40 (1986), 261-266.
- [20] A. N. Milgram, Partially ordered sets, separating systems and inductiveness, in: K. Menger, ed., Reports of a Mathematical Colloquium, University of Notre Dame, 1939.
- [21] K. R. Mount and S. Reiter, Construction of a continuous utility function for a class of preferences, J. Math. Econom. 3 (1976), 227-245.
- [22] L. Nachbin, Topologia e ordem, Univ. of Chicago Press, 1950.
- [23] L. Nachbin, The Haar Integral, Van Nostrand, Princeton, NJ, 1965.
- [24] W. Neuefeind, On continuous utility, J. Econom. Theory, 5 (1972), 174-176.
- [25] B. Peleg, Utility functions for partially ordered topological spaces, Econometrica 38 (1970), 93-96.
- [26] W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0045-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.