PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some applications of differential subordination to a class of analytic functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce (and investigate various properties and characteristics of) certain class Hn (A, B) of analytic functions in the open unit disc by using the techniques of Briot-Bouquet differential subordination. Relevant connections of the results obtained here with the earlier works are pointed out.
Wydawca
Rocznik
Strony
749--762
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, India
autor
  • Department of Mathematics, Sonepur College, Sonepur-767017, India
Bibliografia
  • [1] S. K. Bajpai and R. S. L. Srivastava, On the radius of convexity and starlikeness of univalent functions, Proc. Amer. Math. Soc. 32 (1972), 153-160.
  • [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
  • [3] S. D. Bernardi, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 24 (1970), 312-318.
  • [4] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
  • [5] R. M. Goel, Functions starlike and convex of order a, J. London Math. Soc. 9 (1974/75), 128-130.
  • [6] T. H. Mac Gregor, A subordination for convex functions of order α, J. London Math. Soc. 9 (1975), 530-536.
  • [7] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J. 28 (1981), 157-171.
  • [8] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Diff. Eqns. 56(3) (1985), 297-309.
  • [9] S. S. Miller and P. T. Mocanu, Differential Subordination, Theory and Applications, Marcel Dekker, New York, 2000.
  • [10] M. Obradovic, On certain inequalities for some regular functions in |z| < 1, Int. Jour. Math, & Math. Sci. 8 (1985), 677-681.
  • [11] K. S. Padmanabhan, On the radius of univalence of certain classes of analytic functions, J. London Math. Soc. (2), 1 (1996), 225-231.
  • [12] J. Patel and S. Rout, An application of Differential subordination, Rend. di. Mat., Serie VII, 14 (1994), 367-384.
  • [13] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., 1013, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo (1983), 362-372.
  • [14] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th Edition (Reprinted), Cambridge University Press, Cambridge 1927.
  • [15] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21 (1980), 287-290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0045-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.