Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bayesian networks have many practical applications due to their capability to represent joint probability distribution in many variables in a compact way. There exist efficient reasoning methods for Bayesian networks. Many algorithms for learning Bayesian networks from empirical data have been developed. A well-known problem with Bayesian networks is the practical limitation for the number of variables for which a Bayesian network can be learned in reasonable time. A remarkable exception here is the Chow/Liu algorithm learning tree-like Bayesian networks. However, also this algorithm has an important limitation, related to space consumption. The space required is quadratic in the number of variables. The paper presents a novel algorithm overcoming this limitation for the tree-like class of Bayesian networks. The new algorithm space consumption grows linearly with the number of variables while the execution time is comparable with the Chow/Liu algorithm. This opens new perspectives in construction of Bayesian networks from data containing thousands and more variables, e.g. in automatic text categorization.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
671--684
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warszawa, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
- [1] J. Cerquides, Applying General Bayesian Techniques to Improve TAN Induction, Knowledge Discovery and Data Mining, 1999, pp. 292-296, http://citeseer.nj.nec.com/cerquides99applying.html.
- [2] J. Cheng, D. A. Bell, W. Liu, An algorithm for Bayesian belief network construction from data, Proceedings of AI & STAT'97, Ft. Lauderdale, Florida, 1997.
- [3] J. Cheng, D. A. Bell, W. Liu, Learning belief networks from data: an information theory based approach, Proceedings of the Sixth ACM International Conference on Information and Knowledge Management, 1997.
- [4] C. K. Chow, C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Transactions on Information Theory, IT-14, No. 3, 1968, pp. 462-467.
- [5] C. K. Chou, T. J. Wagner, Consistency of an estimate of tree-dependent probability distribution, IEEE Transactions on Information Theory, IT-19, 1973, 369-371.
- [6] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian Network Classifiers, Machine Learning vol. 29, 1997, pp. 131. http://citeseer.nj.nec.com/friedman97bayesian.html
- [7] N. Inza, M. Merino, P. Larranaga, J. Quiroga, B. Sierra, M. Girala, Feature Subset Selection by Genetic Algorithms and Estimation of Distribution Algorithms. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS., Artificial Intelligence in Medicine (in press), http://citeseer.nj.nec.com/345995.html
- [8] M. A. Kłopotek, S. T. Wierzchoń, M. Michalewicz, M. Bednarczyk, W. Pawłowski, A. Wąsowski, Bayesian Network Mining System, Proc. X International Symposium on Intelligent Information Systems, Zakopane, 18-22 June, 2001, Springer-Verlag, New York 2001. ISBN-3-7908-1407-5. pp. 97-110.
- [9] M. A. Kłopotek, On a Deficiency of the FCI Algorithm Learning Bayesian Networks from Data, Demonstratio Math. 33 (2000), 181-194.
- [10] M. A. Kłopotek, Methods of Identification and Interpretations of Belief Distributions in the Dempster-Shafer Theory, (in Polish). Publisher: Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1998, ISBN 83-900820-8-x.
- [11] M. Meila, An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions to High-Dimensional Sparse Data, http://citeseer. nj.nec.com/285522.html
- [12] M. Meila, An accelerated Chow and Liu algorithm: fitting tree distributions to high-dimensional sparse data, http://citeseer. nj.nec.com/363584.html
- [13] M. Meila, M. Jordan, Learning with mixtures of trees, J. Machine Learning Research 1 (2000), http://citeseer.nj.nec.com/meila001earning.html, http://www.ai.mit.edu/projects/jmlr/papers/ volume1/meila00a/html/meila00a.html
- [14] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo CA, 1988.
- [15] J. Suzuki, Learning Bayesian Belief Networks based on the Minimum Description Length Principle: Basic Properties, IEICE Trans, on Foundamentals, Vol. E82-A, Oct. 1999, and the conference paper in UAI-93. http://www .math.sci.osaka-u.ac.jp/suzuki/net. html
- [16] R. S. Valiveti, B. J. Oommen, The use of chi-squared statistics in determining dependence tree, Technical Report SCS-TR-153, School of Computer Science, Carleton University, Ottawa, Ontario, March 1989.
- [17] R. S. Valiveti, B. J. Oommen, On using the chi-squared statistics for determining statistic dependence, Pattern Recognition Vol. 25 No. 11 (1992), 1389-1400.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0044-0022