Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An inclusion relation between classes of functions, defined by Ruscheweyh derivative and related to spirallike functions, given by S.S. Bhoosnurmath and M. V. Devadas [2] is disproved and some new results are given.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
267--271
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Mathematics Department, Girls College of Education, Science Sections, Sitteen Street, Malaz, Riyadh, Saudi Arabia
autor
- Mathematics Department, Girls College of Education, Science Sections, Sitteen Street, Malaz, Riyadh, Saudi Arabia
Bibliografia
- [1] H. Al-Amiri, On Ruscheweyh derivative, Ann. Polon. Math. 38 (1980), 87-94.
- [2] S. Bhoosnurmath and M. Devads, Subclasses of spirallike functions defined by Ruscheweyh derivatives, Tamkang J. Math. 28 (1997), 59-66.
- [3] Dashrath and S. Shukla, Coefficient estimates for a subclass of spirallike functions, Indian J.Pure Appl. Math. 14 (1983), 431-439.
- [4] I. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 298-326.
- [5] M. Robertson, Univalent functions f(z) for which zf'(z) is spirallike, Mich. Math. J. 16 (1969), 97-101.
- [6] L. Špaček, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat.-Fys. 62 (1932), 12-19.
- [7] V. Kumar and S. Shukla, Radii of spirallikeness of certain analytic functions, Tamkang J. Math 17 (1986), 51-58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0043-0006