PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotics of pseudodifferential parabolic equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper provides new type examples covered by the general theory of global attractors for abstract parabolic equations presented in the monograph [C-D 1]. Inside the class of sectorial equations of the form (1) u+Au = F(u), t > 0, u(0) = uo, we cover pseudodifferential parabolic problems (2) m = -(-A)u + f(u), a należy (0,1), studied with suitable initial-boundary conditions and also their generalizations to problems with the main part being a finite sum of the fractional powers.
Wydawca
Rocznik
Strony
74--91
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
autor
  • Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
autor
  • Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
Bibliografia
  • [AM] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhàuser, Basel, 1995.
  • [B-P-F-S] C. B ardos, P. Penel, U. Frisch and P.-L. Sulem, Modified dissipativity for a nonlinear evolution equations arising in turbulence, Arch. Rational Mech. Anal. 71 (1979), 237-256.
  • [B-K-W 1] P. Biler, G. Karch and W. A. Woyczynski, Asymptotics for multifractal conservation laws, Studia Math. 135 (1999), 231-252.
  • [B-K-W 2] P. Biler, G. Karch and W. A. Woyczynski, Critical nonlinearity and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré - Analyse non Lineaire 18 (2001), 613-637.
  • [C-C-D] A. N. Carvalho, J. W. Cholewa and T. Dlotko, Examples of global attractors in parabolic problems, Hokkaido Math. J. 27 (1998), 77-103.
  • [C-D 1] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.
  • [C-D 2] J. W. Cholewa and T. Dlotko, Abstract parabolic problem with non-Lipschitz nonlinearity, in: Evolution equations: existence, regularity and singularities, Banach Center Publications, 52, PWN, Warsaw, 2000, 73-81.
  • [DA] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.
  • [FR] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
  • [F-S-Z] U. Frisch, M. F. Shlesinger and G. M. Zaslavsky (Eds.), Lévy Flights and Related Topics in Physics, Springer-Verlag, Berlin, 1995.
  • [G-G-S] M. Giga, Y. Giga and H. Sohr, Lp estimates for the Stokes system, in: Functional Analysis and Related Topics, H. Komatsu (Ed.), Springer-Verlag, Berlin, 1993, 55-67.
  • [GU 1] D. Guidetti, On interpolation with boundary conditions, Math. Z. 207 (1991), 439-460.
  • [GU 2] D. Guidetti, On elliptic systems in L1, Osaka J. Math. 30 (1993), 397-429.
  • [HA] J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, R. I., 1988.
  • [HE] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
  • [KA] T. Kato, Schrodinger operators with singular potentials, Israel J. Math. 13 (1973), 135-148.
  • [KO] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
  • [L-M] J. H. Lightbourne, R. H. Martin, Relatively continuous nonlinear perturbations of analytic semigroups, Nonlinear Analysis TMA 1 (1977), 277-292.
  • [PA] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.
  • [P-S] J. Prüss and H. Sohr, Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J. 23 (1993), 161-192.
  • [TA] H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Marcel Dekker, Inc., New York, 1997.
  • [TR] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher Verlag, Berlin, 1978.
  • [VA] V. Varlamov, Nonlinear heat equation with a fractional Laplacian in a disk, Colloq. Math. 81 (1999), 101-122.
  • [YO] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0042-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.