Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is proved that every function f : R -> R having countably many of discontinuity points is the sum of two bilaterally quasi-continuous functions which are continuous at every continuity point of f.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
543--548
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Institute of Mathematics Pedagogical University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland
autor
- Institute of Mathematics Pedagogical University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland
Bibliografia
- [1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659 (1978), Springer.
- [2] Z. Grande, On the Darboux property of the sum of cliquish functions, Real Anal. Exchange 17 (1991-92), 571-576.
- [3] A. Maliszewski, On theorems of Pu & Pu and Grande., Math. Bohemica 121 (1996), 83-87.
- [4] A. Maliszewski, Darboux Property and Quasi-Continuity. A uniform approach, Habilitation thesis, Slupsk 1996.
- [5] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988-89), 259-306.
- [6] H. W. Pu and H. H. Pu, On representations of Baire functions in a given family as sums of Baire Darboux functions with a common summand, Casopis Pest. Mat. 112 no. 3, (1987), 320-326.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0039-0018