Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The density of a d-dimensional polynomial-Gaussian distribution (PGDd) 5 the product of a non-negative polynomial and a Gaussian density. The density of a (PGDd) has many properties similar to a rf-dimensional Gaussian distribution (GDd), but one-dimensional marginal distributions of (PGDd) are (PGD1). Analogously one-dimensional densities of a polynomial-Gaussian process (PGP) are (PGD1). We investigate the differences and similarities between the Gaussian and non-Gaussian cases.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
359--374
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Faculty of Mathematics and Information Science Warsaw University of Technology Pl. Politechniki 1 00-661 Warsaw, Poland
autor
- Faculty of Mathematics and Information Science Warsaw University of Technology Pl. Politechniki 1 00-661 Warsaw, Poland
Bibliografia
- [1] M. Evans and T. Swartz (1994), Distribution theory and inference for polynomial-normal densities, Comm. Stat., Theory Methods 23 (4), 1123-1148.
- [2] N. Johnson and S. Kotz (1972), Distributions in Statistics: Continuous Multivariate Distributions, John Wiley, New York.
- [3] R. S. Liptser and A. N. Shiryaev (1978), Statistics of Random Processes, Springer, New York.
- [4] E. Lukacs (1970), Characteristic Functions, Griffin, London.
- [5] A. Plucińska (2001), Composition and Decomposition of Polynomial-Normal Distributions, Janos Bolyai Math. Society, Proc of "Fourth Hungarian Colloquium on Limit Theorems of Probability and Statistics", (to appear in 2001).
- [6] A. Plucińska (1999), Some properties of polynomial-normal distributions associated with Hermite polynomials, Demonstratio Math. 32, No 1, 195-206.
- [7] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev (1983), Integrals and Special Functions, Nauka, Moscow (in Russian).
- [8] A. N. Shiryaev (1996), Probability, Springer, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0039-0003