PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modele konstytutywne ze zmiennymi wewnętrznymi do opisu zachowania się stali. Cz.2: Modele lepkoplastyczności i plastyczności

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W ramach teorii zmiennych wewnętrznych, których podstawy termodynamiczne podaliśmy w cz. l rozprawy, dyskutowane są modele lepkoplastyczności i plastyczności stali. Szczególną uwagę zwraca się na modele plastyczności z izotropowym i kinematycznym wzmocnieniem zarówno w przypadku materiału wstępnie izotropowego, jak i anizotropowego. Sformułowane wnioski dotyczą głównie zakresu stosowalności omawianych modeli do analizy sprzężonych efektów termicznych i mechanicznych.
EN
In the framework of the theory of internal variables described in Part l of this paper the discussion on elastic-plastic and vicoplastic constitutive models of steel is presented. Isotropic and kinematic hardening of steel is considered. Conclusions are drawn with regard to the practical application of the discussed models in the thermo-mechanical analysis of steel welded joints by the computer code ABAQUS.
Słowa kluczowe
Rocznik
Tom
Strony
123--150
Opis fizyczny
Bibliogr. 150 poz., rys.
Twórcy
autor
  • Instytut Mechaniki Konstrukcji Inżynierskich Wydział Inżynierii Lądowej Politechniki Warszawskiej
  • Instytut Mechaniki Konstrukcji Inżynierskich Wydział Inżynierii Lądowej Politechniki Warszawskiej
  • Instytut Mechaniki Konstrukcji Inżynierskich Wydział Inżynierii Lądowej Politechniki Warszawskiej
Bibliografia
  • [1] ABAQUS Theory manual. Version 5.8., Hibbit, Karlsson and Sorensen, Inc., Pawtucket, 1998.
  • [2] ABAQUS/Standard User’s manual. Version 5.8., Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, 1998.
  • [3] ABAQUS/Standard Verification manual. Version 5.8., Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, 1998.
  • [4] Aravas N.: Finite elastoplastic transformations of transversely isotropic metals. Int. J. Solids Structures, vol. 29, no 17, pp. 2137-2157, 1992.
  • [5] Atluri S.N.: On constitutive relations at finite strain: Hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening. Computer Methods in Applied Mechanics and Engineering 43, pp. 137-171, 1984.
  • [6] Bass J.M., Oden J.T.: Numerical solution of the evolution equations of damage and rate-dependent plasticity. Int. J. Engng Sci., vol. 26, no 7, pp. 713-740, 1988.
  • [7] Bassani J.L.: Yield characterization of metals with transversely isotropic plastic properties. Int. J. Mech. Sci. vol. 19, 651-660, 1977.
  • [8] Boehler J.P.: On a rational formulation of isotropic and ·anisotropic hardening. In: Plasticity Today, Modelling, Methods and Applications, London, pp. 483-502, 1985.
  • [9] Bodner S.R., Partom Y.: Dynamic inelastic properties of materials, Part II- Representation of time-dependent characteristics of metals, Proc. 8th Cong. of the ICAS, Amsterdam 1972.
  • [10] Bodner S.R., Partom Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. ASME, J. Appl. Mech., 42, pp. 385-389, 1975.
  • [11] Boucher M., Cayla P., Cordebois J.P.: Experimental studies of yield surfaces of aluminium alloy and low carbon steel under complex biaxial loadings. Eur. J. Mech., A/Solids, vol. 14, no 1, pp. 1-17, 1995.
  • [12] Brocks W., Olschewski J.: Application of internal time and .internal variable theories of plasticity to complex load histories. Arch. Mech., 41, 1, pp. 133-155, 1983.
  • [13] Bruhns O.: On the description of cyclic deformation processes using a more general elasto-plastic constitutive law. Arch. Mech., 25, 3, pp. 535-546, 1973.
  • [14] Bruhns O.T., Müller R.: Some remarks on the application of two-surface model in plasticity. Acta Mechanica 53, pp. 81-100, 1984.
  • [15] Casey J., Naghdi P.M.: On the relationship between the Eulerian and Lagrangian descriptions of finite rigid plasticity. ARMA, 102, 4, pp. 351-375, 1988.
  • [16] Chaboche J.L.: On the constitutive equations of materials under monotonic or cyclic loadings. Rech. Aerosp. 1983-5, pp. 31-43, 1985.
  • [17] Chaboche J.L: Time-independent constitutive theories for cyclic plasticity, Int. J. of Plasticity, vol. 2, no 2, pp. 149-188, 1986.
  • [18] Chaboche J.L.: EVPCYCL: A finite element program in cyclic viscoplasticity. Rech. Aerosp., 198Cr2, pp. 9-30, 1986.
  • [19] Chaboche J.L.: On some modyfications of kinematic hardening to improve the description of ratchetting effects, InL J. Plasticity, 7, pp. 661-678, 1991. •
  • [20] Chaboche J.L.: Cyclic viscoplastic constitutive equations, Part: A. Thermodynamically consistent formulation, Part: B. Stored energy - Comparison between models and experiments. ASME J. Appl. Mech., vol. 60, pp. 813-828, 1993.
  • [21] Chaboche J.L., Cailletaud G.: On the calculation of structures in cyclic plasticity or viscoplasticity. Computers and Structures, vol. 23, no 1, pp. 23-31, 1986.
  • [22] Chaboche J.L., Nouailhas D.: Constitutive modelling of ratchetting effects, Part I: Experimental facts and properties of classical models, Part II: Possibilities of some additional kinematic rules, J. Eng. Mat. Techn., 111, pp. 384-416, 1989.
  • [23] Chaboche J.L., Rousselier G.: On the plastic and viscoplastic constitutive equations, Part I: Rules developed with internal variable concept, Part II: Application of internal variable concepts to the 316 stainless steel, ASME Journal of Pressure Vessel Technology, vol. 105, pp. 153-164, 1993.
  • [24] Chen W.F., Zhang H.: Structural plasticity: Theory, problems and CAE software. Springer- Verlag, New York 1991.
  • [25] Crisfield M.A.: Non-linear finite element analysis of solids and structures, vol. 1: Essentials, John Wiley and Sons, Chichester 1991.
  • [26] Crisfield M.A.: Non-linear finite element analysis of solids and structures, vol. 2: Advanced topics, John Wiley and Sons, Chichester 1997.
  • [27] Curnier A.: Computational methods in solid mechanics, Kluwer Academic Press, Dordrecht 1994.
  • [28] Dafalias Y., Popov E.P.: ,,A model of non-linearly hardening materials with complex loadings", Acta Mech., 21, pp. 173-192, 1975.
  • [29] Dafalias Y., Popov E.P.: Cyclic loading for materials with a vanishing elastic region. Nuclear Engineering and Design, vol. 41, no 2, pp. 293-302, 1977.
  • [30] Delobelle P., Lexcellent C.: Etude de l'effet rochet de traction-torsion a haute temperature d'un acier inoxydable austenitique. Arch. Mech., 40, 5-6, pp. 557-580, 1988.
  • [31] Drozdov A.D.: Finite elasticity and viscoelasticity. A course in the nonlinear mechanics of solids. Word Scientific, Singapore 1996.
  • [32] Drozdov A.O.: Mechanics of viscoelastic solids. Wiley, Chichester 1998.
  • [33] Drucker O.C., Palgen L.: On the stress-strain relations suitable for cyclic and other loading. J. Appl. Mech. 48, pp. 479-485, 1981.
  • [34] Duszek M.K.: Problems of geometrically non-linear theory of plasticity. Ruhr-Universitat Bochum, nr 21, 1980.
  • [35] Duszek M.K., Perzyna P.: Influence of kinematic hardening on plastic flow localization in damaged solids. Arch. Mech., 40, 5-6, pp. 595-609, 1988.
  • [36] Duszek M.K., Perzyna P.: On combined isotropic and kinematic hardening effects in plastic flow processes. Int J. Plast, 7, pp. 351-363, 1991.
  • [37] Dutko M., Perit, Owen D.R.J.: Universal anisotropic yield criterion based on superquadratic functional representation: Part 1. Algorithmic issues and accuracy analysis. Computer Methods in Appllied Mechanics and Engineering, 109, pp. 73-93, 1993.
  • [38] Eisenberg M.A., Phillips A.: On nonlinear kinematic hardening. Acta Mechanica 5, pp. 1-13, 1968.
  • [39] Eisenberg M.A., Yen C.-F.: A theory of multiaxial anisotropic viscoplasticity. ASME J.Appl. Mech., vol. 48, pp. 276-284, 1981.
  • [40] Favier O., Guelin P.: A discrete memory constitutive scheme for mild steel type material theory and experiment Arch. Mech., 37, 3, pp. 201-219, 1985.
  • [41] Feng Z.Q., De Saxce G.: Rigid-plastic implicit integration scheme. for analysis of metal forming. Eur. J. Mech., A/Solids, 15, 1, pp. 51-66, 1996.
  • [42] Ferron G., Makkouk R., Morreale J.: A parametric description of orthotropic plasticity in metal sheets. Int.J.Plasticity, 431-449, 1994.
  • [43] Fischer P.O., Noe A.: On the introduction of nonproportionality functions (NPF) in standard plasticity by splitting of the plastic work increment Bur. J. Mech., A/Solids, vol. 14, no 4, pp. 605-632, 1995.
  • [44] Freudenthal A.M., Gou P.F.: Second order effects in the theory of plasticity. Acta Mechanica, 8, pp. 34-52, 1969.
  • [45] Gabryszewski Z., Gronostajski J.: Mechanika procesów obróbki plastycznej. PWN, Warszawa 1991.
  • [46] Gotoh M.: A theory of plastic anisotropy based on a yield function of fourth order (Plane stress state). Part I and Part II Int.J.Mech. Sci. vol. 19, 505-520, 1977.
  • [47] Greenstreet W.L., Phillips A.: A theory of an elastic-plastic continuum with special emphasis to artificial graphite. Acta Mechanica 16, pp. 143-156, 1973.
  • [48] Gupta N.K., Meyers A., Wichtmann A.: A function for representing experimental yield surfaces. Eur. J. Mech., A/Solids, 14, 1, pp. 45-53, 1995.
  • [49] Harding J.: The temperature and strain rate sensitivity of a -titanium. Arch. Mech., 27, 5-6,pp. 715-723, 1975.
  • [50] Hill R.: A theory of the yielding and plastic flow of anisotropic metals. Proc.Roy.Soc. London.Ser.A 193, pp. 281-297, 1948.
  • [51] Hill R.: The mathematical theory of plasticity, Clarendon Press, Oxford 1950.
  • [52] Hill R., Hutchinson J.W.: Differential hardening in sheet metal under biaxial loading: A theoretical framework. J. Appl. Mech. 59, pp. S1-S9, 1992.
  • [53] Hu L.W.: Studies on plastic flaw of anisotropic metals, ASME Appl. Mech. Div., 8, pp. 444-450, 1956.
  • [54] Huang Z.P.: A rate-independent thermoplastic theory at finite deformation. Arch.Mech., vol. 46, no 6, pp. 855-879, 1994.
  • [55] Huber M.T.: Przyczynek do podstaw teorii wytrzymałości. Czasopismo Techniczne, Lwów, 22, 1904, także Pisma, t II, PWN, Warszawa 1956.
  • [56] Jakowluk A.: Procesy pełzania i zmęczenia w materiałach. WNT, Warszawa 1993.
  • [57] Jemioło S.: Translacyjne izotropowe i ortotropowe wzmocnienie w materiałach anizotropowych. Sem. Teoretyczne Podstawy Budownictwa 30.06.92-1.07.92 Warszawa, Proc. Moskwa, s. 89-94, 1992.
  • [58] Jemioło S.: Uogólnione prawo płynięcia dla materiału plastycznego ze wzmocnieniem. Prace Naukowe, Budownictwo, z. 114, OWPW, Warszawa, s. 83-107, 1993.
  • [59] Jemioło S.: Racjonalne formułowanie warunków plastyczności dla materiałów izotropowych. Prace Naukowe, Budownictwo z. 120, OWPW, Warszawa, s. 51-62, 1993.
  • [60] Jemioło S.: Warunki plastyczności oraz hipotezy wytężeniowe materiałów ortotropowych i transwersalnie izotropowych. Przegląd literatury, niezmiennicze sformułowanie relacji konstytutywnych. Prace Naukowe, Budownictwo z. 131, OWPW, Warszawa, s. 5-52, 1996.
  • [61] Jemioło S., Giżejowski M.: Modele konstytutywne ze zmiennymi wewnętrznymi do opisu zachowania się stali w węzłach spawanych, Cz. 1: Podstawy termodynamiczne, Cz. 2. Modele lepkoplastyczności i plastyczności. Materiały Międzynarodowego Sympozjum „Węzły podatne w konstrukcjach metalowych i zespolonych”, Warszawa 24-25 listopada, 2000, red. M.A. Giżejowski, A.M. Barszcz, Oficyna Wydawnicza PW, str. 289-318, 2000.
  • [62] Jemioło S., Giżejowski M.: Modele konstytutywne ze zmiennymi wewnętrznymi do opisu zachowania się; stali, Cz. 1: Podstawy termodynamiczne”, Prace Naukowe, Budownictwo, OWPW w przygotowaniu.
  • [63] Jcmioło S., Kowalczyk K.: Sformułowanie niezmiennicze i rozkład spektralny anizotropowego warunku plastyczności Hilla, Prace Naukowe, Budownictwo, OWPW, Warszawa, z. 133, s. 87-123, 1999.
  • [64] Jemioło S., Szwed A.: O zastosowaniu funkcji wypukłych w teorii wytężenia materiałów izotropowych. Propozycja warunków plastyczności metali, Prace Naukowe, Budownictwo, OWPW, Warszawa, z. 133, s. 5-51, 1999.
  • [65] Jemioło S., Szwed A.: O interpretacjach różnych rodzajów wzmocnienia na przykładzie warunku plastyczności Maxwella-Hubera-Misesa-Hencky'ego, Polish-Ukrainian Transactions, Theoretical Foundations of Civil Engineering, W. Szcześniak (ed), OWPW, Warszawa, pp. 145-156, 2000.
  • [66] Krieg R.D.: A practical two surface plasticity theory, J. Appl. Mech., September, pp. 641-646, 1975.
  • [67] Kleiber M.: Metoda element6w skończonych w nieliniowej mechanice kontinuum. PWN, Warszawa 1985.
  • [68] Kleiber M.: Wprowadzenie do metody elementów skończonych. PWN, Warszawa 1989.
  • [69] Kleiber M. [ed]: Mechanika techniczna t. 11, Komputerowe metody mechaniki ciał stałych. PWN, Warszawa 1995.
  • [70] Kleiber M., Woźniak Cz.: Nonlinear mechanics of structures. PWN, Warszawa, Kluwer Academic Publishers, Dordrecht 1991.
  • [71] Kurtyka T.: Parameter identification of a distortional model of subsequent yield surfaces. Arch. Mech., 40, 4, pp. 433-454, 1985. •
  • [72] Leblond J.-B., Perrin G., Suquet P.: Exact results and approximate models for porous viscoplastic solids. Int. J. Plasticity, vol. 10, no 3, pp. 213-235, 1994.
  • [73] Leblond J.-B., Perrin G., Devaux J.: An improved Gurson-type model for hardenable ductile metals. Bur. J. Mech., A/Solids, 14, 4, pp. 499-527, 1995.
  • [74] Lehmann To.: Some remarks on kinematics and constitutive equations of inelastic solids. In: Mechanics of inelastic media and structures, O. Mahrenholtz, A. Sawczuk [eds], PWN, Warszawa, pp. 161-178, 1982.
  • [75] Lehmann Th.: On thermodynamically-consistent constitutive laws in plasticity and viscoplasticity. Arch. Mech., 40, 4, pp. 415-431, 1985.
  • [76] Lehmann Th., Raniecki B., Trąmpczyński W.: The Bauschinger effect in cyclic plasticity. Arch. Mech., 37, 6, pp. 643-659, 1985.
  • [77] Lege D.J., Barlat F., Brem J.C.: Characterization and modeling of the mechanical behavior and formability of A 2008-T4 sheet sample. Int.J. Mech. Sci. vol. 31, no 7, 549-563, 1989.
  • [78] Litewka A.: Plastic flow of anisotropic aluminium alloy sheet metals. Bull.Acad.Polon.Sci., 25, 475-484, 1977.
  • [79] Litewka A.: Creep rupture of metals under multi-axial state of stress. Arch. Mech., 41, 1, pp. 3-23, 1989.
  • [79] Loret B., Hammoum.: A note on the accuracy of stress-point algorithms for anisotropic elastic-plastic solids. Computer Methods in Appllied Mechanics and Engineering, 98, pp. 399-409), 1992.
  • [80] Lubarda V.A.: Some aspects of elasto-plastic constitutive analysis of elastically anisotropic materials. Int J. Plasticity, 7, pp. 625-636, 1991.
  • [81] Malinin M.N., Rżysko J.: Mechanika materiałów. PWN, Warszawa 1981.
  • [82] Massonnet CH., Olszak W., Phillips A.: Plasticity in structural engineering, fundamentals and applications. CISM Courses and Lectures No 241, Springer-Verlag, Wien 1979.
  • [83] McDowell D.L.: A two surface model for transient nonproportional cyclic plasticity: Part 1. Development of appropriate equations, Part 2. Comparison of theory with experiments. ASME J.Appl. Mech., vol. 52, pp. 298-308, 1985.
  • [84] McDowell D.L.: An evaluation of recent developments in hardening and flow rules for rate-independent, nonproportional cyclic plasticity. J. Appl. Mech., 54, pp. 323-324, 1987.
  • [85] Mises R.: Mechanik der plastischen Formanderung von Kristallen, ZAMM, vol. 8, no 3, 161-185, 1928.
  • [86] Mróz Z.: On the description of anisotropic workhardening. J. Mech. Phys. Solids, 15, pp. 163-175, 1967.
  • [87] Mróz Z.: An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model, Acta Mechanica, 7, pp. 199-212, 1969.
  • [88] Mróz Z., Goss Cz.: O złożonych modelach wzmocnienia plastycznego, Mech. Tech. i Stos., 2, 10, str. 259-279, 1972.
  • [89] Mróz Z., Rodzik P.: On multisurface and integral description of anisotropic hardening evolution of metals. Eur. J. Mech., A/Solids, 15, no 1, pp. 1-28, 1996.
  • [90] Mróz Z., Shrivastava H.P., Dubey R.N.: A non-linear hardening model and its application to cyclic loading. Acta Mechanica 25, pp. 51-61, 1976.
  • [91] Murakami S., Ohno N.: A continuum theory of creep and creep damage. 3rd Symposium, Leicester, U.K., pp. 422-443, 1980.
  • [92] Murakami S., Sawczuk A.: On description of rate-independent behavior for prestraind solid. Arch. Mech., 31, pp. 251-264, 1979.
  • [93] Murakami S., Sawczuk A.: A unified approach to constitutive equations of inelasticity based on tensor function representations. Nucl.Eng.Design, 65, pp. 33-47, 1981.
  • [94] Naghdi P.M.: A critical review of the state of finite plasticity, ZAMP, vol. 41, 5, pp. 315-394, 1990.
  • [95] Oden J.T.: Finite elements of nonlinear continua, McGraw-Hill, New York 1972.
  • [96] Ohno N.: Recent topics in constitutive modelling of cyclic plasticity and viscoplasticity . ASME Appl. Mech. Revs., 43, pp. 283-295, 1990.
  • [97] Olesiak Z.: O warunku plastyczności Hubera-Misesa, Mech. Teor. Stos., 13, s. 523-528, 1975.
  • [98] Olszak W. (red.): Teoria plastyczności, PWN, Warszawa 1965.
  • [99] Olszak W., Mroz Z., Perzyna P.: Recent trends in the development of the theory of plasticity. Pergamon Press, Oxford, PWN, Warszawa 1963.
  • [100] Ortiz M., Popov E.P.: Distortional hardening rules for metal plasticity. J. Eng. Mech., vol. 109, no 4, pp. 1042-1057, 1983.
  • [101] Paulun J.E., Pęcherski R.B.: Study of corotational rates for kinematic hardening in finite deformation plasticity. Arch. Mech., 37, 6, pp. 661-677, 1985.
  • [102] Perić D., Owen D.R.J.: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues, Computer Methods in Appllied Mechanics and Engineering, 94, pp. 35-61, 1992.
  • [103] Perzyna P.: The study of the dynamic behavior of rate sensitive plastic materials. Arch. Mech. 15, 1, pp. 113-129, 1963.
  • [104] Perzyna P.: Fundamentals problems in viscoplasticity. Advances in Mechanics, 9, pp. 243-377, 1966.
  • [105] Perzyna P.: Teoria lepkoplastyczności. PWN, Warszawa 1966.
  • [106] Perzyna P.: Termodynamika materiałów niesprężystych. PWN, Warszawa 1978.
  • [107] Perzyna P.: Discussion of strain rate effects on necking phenomenon. In Mechanics of inelastic media and structures, O. Mahrenholtz, A. Sawczuk [eds], PWN, Warszawa, pp. 207-218, 1982.
  • [108] Perzyna P.: Constitutive modelling for brittle dynamic fracture in dissipative solids. Arch. Mech., 38, 5-6, pp. 725-738, 1986.
  • [109] Perzyna P., Klepaczko J., Bejda J., Nowacki W.K., Wierzbicki T.: Zastosowania lepkoplastyczności. Ossolineum, Wroclaw 1971.
  • [110] Perzyna P., Pęcherski R.B.: Modified theory of viscoplasticity. Physical foundations and identification of material functions for advanced strafrts. Arch.Mech., 35, 3, pp. 423-436, 1983.
  • [111] Popov E.P., Petersson H.: Cyclic metal plasticity: Experiments and theory. ASCE J. Eng. Mech. Div., vol. 104, no EM6, pp. 1371-1388, 1976.
  • [112] Prager W.: Strain hardening under combined stresses, J.Appl.Phys., 16, pp. 837-840, 1945.
  • [113] Prevost J.H.: Plasticity theory for soil stress-strain behavior, J. Eng. Mech. Div., vol. 105, no EMS, pp. 1177-1194, 1978.
  • [114] Prevost J.H.: Two-surface versus multi-surface plasticity theories: A critical assessment. Int. J. Num. An. Meth. Geomech., vol. 6, pp. 323-338, 1982.
  • [115] Raniecki B.: An introduction to the concepts of applied thermoplasticity. Lectures held at Materials Center, Royal Institute of Technology, Stockholm 1976.
  • [116] Raniecki B.: Infinitesimal thermoplasticity and kinematics of finite elastic-plastic deformations. Basic concepts. Mitteilungen aus dem Institut fur Mechanik Nr 2/1978, Ruhr-Universitat, Bohum 1978.
  • [117] Raniecki B. Samanta S.K.: The therodynamic model of rigid-plastic solid with kinematic hardening, plastic spin and orientation variables. Arch. Mech., vol. 41, no 5, pp. 747-758, 1989.
  • [118] Ready B.D., Martin J.B.: Algorithms for the solution of internal variable problems in plasticity, Computer Methods in Appllied Mechanics and Engineering, 93, pp. 253-273, 1991.
  • [119] Rees D.W.A.: Anisotropic hardening theory and the Bauschinger effect. Journal of Strain Analysis, vol. 16, no 2, pp. 85-95, 1981.
  • [120] Rees D.W.A.: Yield functions that account for the effects of initial and subsequent plastic anisotropy. Acta Mechanica, vol. 43, pp. 223-241, 1982.
  • [121] Rees D.W.A.: The theory of scalar plastic deformation functions. ZAMM 63, pp. 217-228, 1983.
  • [122] Rees D.W.A.: A theory of non-linear anisotropic hardening. Proc. Instn. Mech. Engrs, vol. 197C, pp. 31-41, 1983.
  • [123] Rees D.W.A.: A survey of hardening in metallic materials. In Failure criteria of structured media, Boehler (ed.), Balkema, 69-97, 1993.
  • [124] Romano G., Rosati L., Marotti de Sciarra F.: An internal variable theory of inelastic behaviour derived from the uniaxial rigid-perfectly plastic law. Int. J. Engng Sci., vol. 31, no 8, pp. 1105-1120, 1993.
  • [125] Rychlewski J.: Elastic energy decompositions and limit criteria (in Russian), Advances in Mechanics, vol. 7, no 3, 51-80, 1984.
  • [126] Sawczuk A.: Wprowadzenie do mechaniki konstrukcji plastycznych. PWN, Warszawa 1982.
  • [127] Shrivastava H.P., Dubey R.N.: Yield condition and hardening rule for density varying materials. ZAMM 54, pp. 594-596, 1974.
  • [128] Shrivastava H.P., Mróz Z., Dubey R.N.: Yield and the hardening rule for a plastic solid. ZAMM, 53,pp. 625-633, 1973.
  • [129] Shrivastava H.P., Mróz Z., Dubey R.N.: Yield criterion and second-order effects in plane-stress. Acta Mech., 17, pp. 137-143, 1973.
  • [130] Sidoroff F.: The geometrical concept of intermediate configuration and elastic-plastic finite strain. Arch. Mech., 25, 2, pp. 299-308, 1973.
  • [131] Sidoroff F.: On the formulation of plasticity and viscoplasticity with internal variables. Arch. Mech., 27, 5-6, pp. 807-819, 1975.
  • [132] Simo J.C., Kennedy J.G., Govindjee S.: Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int. J. for Numerical Methods in Engineering, vol. 26, pp. 2161-2185, 1988.
  • [133] Simo J.C., Taylor R.L.: Consistent tangent operators for rate independent elasto-plasticity, Computer Methods in Appllied Mechanics and Engineering, 48, pp. 101-118, 1985.
  • [134] Sobotka Z.: Rheology of materials and engineering structures. Academia, Prague 1984.
  • [135] Stouffer D.C., Bodner S.R.: A constitutive model for the deformation induced anisotropic plastic flow of metals. Int. J. Engng Sci., vol. 17, pp. 757-764, 1979.
  • [136] Szczepiński W.: On the effect of plastic deformation on yield condition. Arch. Mech., 2, 15, pp. 275-296, 1963.
  • [137] Szczepiński W.: On the mechanisms of plastic deformation of metals under cyclic loadings. In: Mechanics of inelastic media and structures, O. Mahrenholtz, A. Sawczuk [eds], PWN, Warszawa, pp. 283-295, 1982.
  • [138] Szczepiński W. [ed]: Mechanika techniczna t. 10., Metody doświadczalne mechaniki ciała stałego. PWN, Warszawa 1984.
  • [139] Telega J.J.: Some aspects of invariant theory in plasticity. Part I. New results relative to representation of isotropic and anisotropic tensor functions, Arch.Mech., 36, 2, 147-162, 1984.
  • [140] Thomas T.Y.: Plastic flow and fracture in solids. Academic Press, New York 1961.
  • [141] Tąmpczyński W., Mróz Z.: Anisotropic hardening model and its application to cyclic loading. Int. J. of Plasticity, 8, pp. 925-946, 1992.
  • [142] Turski K.: Warunki plastyczności i prawa plastycznego wzmocnienia. Dotychczasowe hipotezy i nowe propozycje. Raporty IPPT, 22/1983, Warszawa 1983.
  • [143] Valanis K.C.: A theory of viscoplasticity without a yield surface. Part I General theory, Part II. Application to mechanical behavior of metals, Arch. Mech., 23, 4, pp. 517-551, 1971.
  • [144] Valanis K.C.: Fundamental consequences of a new intrinsic time measure-plasticity as a limit of the endochronic theory, Arch. Mech., 32, p. 171, 1980.
  • [145] Wang J.-D., Ohno N.: Two equivalent forms of nonlinear kinematic hardening: Application to nonisothermal plasticity, Int. J. Plasticity, 7, pp. 637-650, 1991.
  • [146] Woźnica K.: Lois constitutives du solde elasto-viscoplastique. Cahiers de Mecanique, Lille 1993.
  • [147] Yoshida F.: Ratchetting behaviour of 304 stainless steel at 650 C under multiaxially strain-controlled and uniaxially/multiaxially stress-controlled conditions. Bur. J. Mech., A/Soljds, vol. 14, no 1, pp. 97-117, 1995.
  • [148] Zarka J.: Direct analysis of elastic-plastic structures with 'overlay' materials during cyclic loading. Int. J. Numerical Methods in Engineering, vol. 15, pp. 225-235, 1980.
  • [149] Zienkiewicz O.C., Taylor R.L.: The finite element method. McGraw-Hill, 4th edition, Volumes 1 and 2, 1994.
  • [150] Życzkowski M.: Obciążenia złożone w teorii plastyczności, PWN, Warszawa 1973.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0033-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.