Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new generalization of the trapezoid formula for n-time differentiable mappings and applications in Numerical Analysis are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
719--736
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Computer and Mathematical Sciences, Victoria University of Technology, PO Box 14428 MCMC, Melbourne, Victoria 8001
autor
- Department of Computer and Mathematical Sciences, Victoria University of Technology, PO Box 14428 MCMC, Melbourne, Victoria 8001
autor
- Department of Computer and Mathematical Sciences, Victoria University of Technology, PO Box 14428 MCMC, Melbourne, Victoria 8001
autor
- Communication Division, DSTO, PO Box 1500 Salisbury, SA 5108
Bibliografia
- [1] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(4) (1999), 697-712.
- [2] S. S. Dragomir, On the trapezoid formula for Lipschitzian mappings and applications, Tamkang J . Math., 30(2) (1999), 133-138.
- [3] S. S. Dragomir, P. Cerone and A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J . Pure Appl. Math., 31(5) (2000), 415-494.
- [4] S. S. Dragomir and T. C. Peachey, New estimation of the remainder in the trapezoidal formula with applications, accepted Studia Math. Babes-Bolyai Univ.
- [5] P. Cerone, S. S. Dragomir and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish. J . Math. 24 (2000), 1-17.
- [6] N. S. Barnett, S. S. Dragomir and C. E. M. Pearce, A quasi-trapezoid inequality for double integrals, submitted J . Austral. Math. Sec. (B).
- [7] S. S. Dragomir and A. Mc Andrew, On trapezoid inequality via a Griiss type result and applications, accepted in Tamkang J. Math.
- [8] S. S. Dragomir, J. E. Pečarić and S. Wang, The unified treatment of trapezoid, Simpson and Ostrowski type inequality for monotonic mappings and applications, Math. Comput. Modelling, 31 (2000), 61-70.
- [9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
- [10] V. Čuljak, C.E.M. Pearce and J. P. Pečarić, The unified treatment of some inequalities of Ostrowski and Simpson's type, submitted.
- [11] S. S. Dragomir, A Taylor like formula and application in numerical integration, submitted.
- [12] P. Cerone and S. S. Dragomir, Three point quadrature rules involving, at most, a first derivative, Preprint. RGMIA Res. Rep. Coll., 2(4) (1999), Article 8.
- [13] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Presss, 1992.
- [14] M. Matic, J. E. Pečarić and N. Ujevic, On New estimation of the remainder in Generalised Taylor's Formula, M.I.A., Vol. 2 No. 3 (1999), 343-361.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0031-0004