PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Singular linear differential equations and Laurent series

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linear ordinary differential operators with meromorphic coefficients at zero are studied. It is well known that in the case when zero is a regular or regular singular point then fundamental system of solutions consists of convergent series of the Taylor type. On the other hand in the case of irregular singular point power series solution, in general, does not converge; however it can be asymptotically sum up in sectors to an exact solution. The aim of the paper is to show that for a class of operators with irregular singular point the fundamental system of solutions can be found in a form of convergent Laurent type series of a Gevrey order. Under suitable conditions the convergence of the approximation scheme for a functional equation Wj ( z -j) G ( z - j) = H ( z 't j is also j=-k derived and properties of its solution G are described.
Wydawca
Rocznik
Strony
503--520
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0012-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.