Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present paper is to investigate the existence of positive continuous solutions of the nonlinear integral equation x(t) = St-r f(s, x(s))ds, arising in infectious diseases. We give sufficient conditions ensuring the existence of positive periodic continuous solutions of this equation, provided that f is a continuous function periodic in the first argument. We also study the existence of positive continuous solutions of the initial value problem for the considered equation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
129--138
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Fac. De Matematicǎ Şi Informaticǎ, Universitatea Babeş-Bolyai, Str. Kogǎlniceanu Nr. 1, R0-3400 Cluj-Napoca, Romania
Bibliografia
- [1] K. L. Cooke and J. L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31 (1976), 87-104.
- [2] D. Guo and V. Lakshmikantham, Positive Solutions of Nonlinear Integral Equations Arising in Infectious Diseases, J. Math. Anal. Appl. 134 (1988), 1-8.
- [3] P. Hartman, Ordinary Differential Equations, John Wiley, New York 1964.
- [4] R. Precup, Positive solutions of the initial value problem for an integral equation modeling infectious disease, in: Seminar on Fixed Point Theory, Preprint Nr. 3,1. A. Rus (eds.), Babeş-Bolyai University, Cluj-Napoca (1991), 25-30.
- [5] R. Precup, Monotone technique to the initial value problem for a delay integral equation from biomathematics, Studia Univ. Babeş-Bolyai Math. 40 (1995), 63-73.
- [6] A. Stokes, The applications of a fixed point theorem to a variety of non-linear stability problems, in: Contributions to the theory of nonlinear oscillations, Vol. V, Princeton University Press, Princeton, N. J. (1960), 173-184.
- [7] L. R. Williams and R. W. Leggett, Nonzero solutions of nonlinear integral equations modeling infectious disease, SIAM J. Math. Anal. 13 (1982), 112-121.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA1-0011-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.