Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Certain aspects of Lagrangian and Hamiltonian dynamics are investigated within the framework of an extended complex phase space approach, characterized by the transformation q = q1 + iq2, p = p1 + ip2 and by the presence of the imaginary time variable τ in the complex variable z = t + iτ in a local chart. It is an application of imaginary time which is essential in connecting quantum mechanics with statistical physics. We argue that the novel complexified approach enhances the system of dynamical equations obtained in the sense that the new derived equations appear as certain combinations of former equations. Furthermore, it was shown that the physics we experience in the real time is somewhat different from what is experienced in imaginary region. Further consequences are discussed in some details.
Wydawca
Czasopismo
Rocznik
Tom
Strony
283--295
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Key Laboratory of Numerical Simulation of Sichuan Province, Neijiang, Sichuan 641112, nabulsiahmadrami@yahoo.fr
Bibliografia
- [1] C. M. Bender, D. D. Holm and D. W. Hook, Complexified dynamical systems, J. Phys. A40 (2007), F793-F804.
- [2] I. Bender, D. Gomez, H. Rothe and K. Rothe, Effects of barrier penetration on energy spectrum and wave functions in the path integral formalism, Nuci. Phys. B136 (1978), 259-276.
- [3] D. Boyanovsky, R. Willey and R. Holman, Quantum mechanical metastability: When and why? Nuci. Phys. B376 (1992), 599-634.
- [4] B. Buti, N. N. Rao and S. B. Khadkikar, Complex and singular solutions of KdV and MKdV equations, Phys. Scr. 34 (1986), 729-731.
- [5] W. Z. Chao, The imaginary time in the tunneling process, preprint (2008), http: //arxiv.org/abs/0804.0210.
- [6] C.-C. Chou and R. E. Wyatt, Quantum trajectories in complex space, Phys. Rev. A76 (2007), 012115-012129.
- [7] R. K. Colegrave, P. Croxson and M. A. Mannan, Complex invariants for the time-dependent harmonic oscillator, Phys. Lett. A13 (1988), 407-410.
- [8] R. A. El-Nabulsi, Complexified quantum field theory and „mass without mass” from multidimensional fractional actionlike variational approach with dynamical fractional exponents, Chaos Solitons Fractals 42 (2009), 2384-2398.
- [9] R. A. El-Nabulsi, Fractional quantum Euler-Cauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics, Mod. Phys. Lett. B23 (2009), 3369-3386.
- [10] R. A. El-Nabulsi, Extended fractional calculus of variations, complexified geodesies and Wong’s fractional equations on complex plane and on Lie algebroids, Annals Univ. Maria Curie 1 (2011), 49-67.
- [11] R. A. El-Nabulsi and G.-c. Wu, Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order (α, β) and dynamical fractional integral exponent, Afr. Diaspora J. Math. 13 (2012), 45-61.
- [12] J. Flower, S. W. Otto and S. Callahan, Complex Langevin equations and lattice gauge theory, Phys. Rev. D34 (1986), 598-604.
- [13] K. Fujii, K. Higashida, R. Kato and Y. Wada, Cavity QED and quantum computation in the weak coupling regime, J. Opt. B: Quantum Semiclass. Opt. 6 (2004), 502-509.
- [14] K. Fujii, K. Higashida, R. Kato and Y. Wada, Cavity QED and quantum computation in the weak coupling regime II: Complete construction of the controlled-controlled NOT gate, in: Trends in Quantum Computing Research, Nova Science Publishers, New York (2006), 1-32.
- [15] K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Oxford University Press, Oxford, 2004.
- [16] G. Guralnik and C. Pehlevan, Complex Langevin equations and Schwinger-Dyson equations, Nuci. Phys. B811 (2009), 519-536.
- [17] H. W. Hamber and H. C. Ren, Complex probabilities and the Langevin equation, Phys. Lett. B159 (1985), 330-334.
- [18] S. Hawking, The Universe in a Nutshell, Bantam Books, 2001.
- [19] K. A. James and P. V. Landshoff, Finite-temperature field theory in the temporal gauge: the imaginary-time formalism, Phys. Letts. B251 (1990), 167-174.
- [20] R. S. Kaushal, Classical and quantum mechanics of complex Hamiltonian systems: An extended complex phase space approach, PRAMANA J. Phys. 73 (2009), 287-297.
- [21] R. S. Kaushal and S. Singh, Construction of complex invariants for classical dynamical systems, Ann. Phys. (N.Y.) 288 (2001), 253-276.
- [22] N. P. Landsman and C. H. van Weert, Real-and imaginary-time field theory at finite temperature and density, Phys. Rep. 145 (1987), 141-249.
- [23] A. Lapedes and E. Mottola, Complex path integrals and finite temperatures, Nucl. Phys. B203( 1982), 58-92.
- [24] S. Levit, J. W. Negele and Z. Paltiel, Barrier penetration and spontaneous fission in the time-dependent mean-field approximation, Phys. Rev. C22 (1980), 1979-1995.
- [25] D. W. McLaughlin, Complex time, contour independent path integration, and barrier penetration, J. Math. Phys. 13 (1972), 1099-1109.
- [26] A. J. Niemi and G. W. Semenoff, Finite temperature quantum field theory in Minkowski space, Ann. Phys. 152 (1984), 105-129.
- [27] A. Patrascioiu, Complex time and the Gaussian approximation, Phys. Rev. D24 (1981),496-504.
- [28] S. G. Rajeev, Dissipative mechanics using complex-valued Hamiltonians, preprint (2007), http://arxiv.org/abs/quant-ph/0701141.
- [29] N. N. Rao, B. Buti and S. B. Khadkikar, Hamiltonian systems with indefinite kinetic energy, PRAMANA J. Phys. 27 (1986), 497-505.
- [30] V. I. Sbitnev, Bohmian trajectories and the path integral paradigm: complexified Lagrangian mechanics, Int. J. Bifur. Chaos 19 (2009), 2335-2346.
- [31] S. Singh and R. S. Kaushal, Complex dynamical invariants for one-dimensional classical systems, Phys. Scr. 67 (2003), 181-192.
- [32] A. M. Steinberg, R G Kwiat and R. Y. Chiao, Measurement of the single-photon tunneling time, Phys. Rev. Lett. 71 (1993), 708-711.
- [33] U. Weiss and W. Haefner, Complex-time path integrals beyond the stationary-phase approximation: Decay of metastable states and quantum statistical metastability, Phys. Rev. D27 (1983), 2916-2927.
- [34] C.-D. Yang, Quantum motion in complex space, Chaos Solitons Fractals 33 (2007), 1073-1092.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0002-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.