PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal one-parameter mean bounds for the convex combination of arithmetic and geometric means

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we answer the question: What are the greatest value p = p(α) and least value q = q(α)such that the double inequality Jp(a,b) < αA(a,b) + (1 - α)G(a,b) < Jq(a,b) holds for any α ∈ (0,1) and all a,b > 0 with a ≠ b? Here, A(a,b) = (a+b):2, G(a,b) = √ab and Jp (a,b) denote the arithmetic, geometric and p-th one-parameter means of a and b, respectively.
Wydawca
Rocznik
Strony
197--207
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
autor
autor
  • School of Teacher Education, Huzhou Teachers College, Huzhou 313000, China, xwf212@hutc.zj.cn
Bibliografia
  • [1] H. Alzer, Ungleichungen für Mittelwerte, Arch. Math. 47 (1986), 422-126.
  • [2] H. Alzer, On Stolarsky’s mean value family, Internat. J. Math. Ed. Sci. Tech. 20 (1987), 186-189.
  • [3] H. Alzer, Über eine einparametrige Familie von Mittelwerten, Bayer. Akad. Wiss. Math-Natur. Kl. Sitzungsber. 1987 (1988), 1-9.
  • [4] H. Alzer, Über eine einparametrige Familie von Mittelwerten II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1988 (1989), 23-39.
  • [5] H. Alzer, A power mean inequality for the gamma function, Monatsh. Math. 131 (2000), 179-188.
  • [6] H. Alzer and W. Janous, Solution of problem 8*, Crux Math. 13 (1987), 173-178.
  • [7] H. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math. 80 (2003), 201-215.
  • [8] J. Bukor, J. Toth and L. Zsilinszky, The logarithmic mean and the power mean of positive numbers, Octogon Math. Mag. 2 (1994), 19-24.
  • [9] P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer, Dordrecht, 2003.
  • [10] P. S. Bullen, D. S. Mitrinovic and P. M. Vasic, Means and Their Inequalities, D. Reidel Publishing, Dordrecht, 1988.
  • [11] B. C. Carlson, The logarithmic mean, Arner. Math. Monthly 79 (1972), 615-618.
  • [12] W. S. Cheung and F. Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese J. Math. 11 (2007), 231-237.
  • [13] Y.-M. Chu and B.-Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstr. Appl. Anal. (2010), 1-13, article ID 303286.
  • [14] Y.-M. Chu and W.-F Xia, Inequalities for generalized logarithmic means, J. Inequal. Appl. (2009), 1-7, article ID 763252.
  • [15] P. A. Hästö, Optimal inequalities between Seiffert’s mean and power means, Math. Inequal. Appl. 7 (2004), 47-53.
  • [16] C. O. Imoru, The power mean and the logarithmic mean, Internat. J. Math. Math. Sci. 5 (1982), 337-343.
  • [17] W. Janous, A note on generalized Heronian means, Math. Inequal. Appl. 4 (2001), 369-375.
  • [18] H. T. Ku, M. C. Ku and X.-M. Zhang, Generalized power means and interpolating inequalities, Proc. Amer. Math. Soc. 127 (1999), 145-154.
  • [19] J.-C. Kuang, Applied Inequalities (in Chinese), Shandong Science and Technology Press, Jinan, 2004.
  • [20] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-233.
  • [21] T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879-883.
  • [22] B.-Y. Long and Y.-M. Chu, Optimal inequalities for generalized logarithmic, arithmetic, and geometric means, J. Inequal. Appl. (2010), 1-10, article ID 806825.
  • [23] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678-715 (1980), 15-18.
  • [24] A. O. Pittenger, The symmetric, logarithmic and power means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678-715 (1980), 19-23.
  • [25] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99-104.
  • [26] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951.
  • [27] F. Qi, P. Cerone, S.S. Dragomir and H. M. Srivastava, Alternative proofs for mono-tonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput. 208 (2009), 129-133.
  • [28] J. Sandor, A note on some inequalities for means, Arch. Math. 56 (1991), A11-A13.
  • [29] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly 87 (1980), 545-548.
  • [30] M. K. Vamanamurthy and M. Vuorinen, Inequalities for means, J. Math. Anal. Appl. 183(1994), 155-166.
  • [31] S.-H. Wu, Generalization and sharpness of the power means inequality and their applications, J. Math. Anal. Appl. 312 (2005), 637-652.
  • [32] R. Yang and D. Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), 105-108.
  • [33] N.-G. Zheng, Z.-H. Zhang and X.-M. Zhang, Schur-convexity of two types of one-parameter mean values in n variables, J. Inequal. Appl. (2007), 1-10, article ID 78175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0002-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.