INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012 99

Hybrid Algorithm Computation Methodology
to Accelerate Sound Source Localization

Christian Ibala, Fernando Escobar, Xin Chang, and Carlos Valderrama

Abstract—Latest algorithm solutions for sound source
localization have dramatically increased their computation
burden. This paper proposes a novel hybrid algorithm with the
ability to adapt its search spectrum based on target movement;
we also show some studies and metrics to analyze its
implementation constraints and remark its advantages over
previous solutions. The proposed algorithm provides a good
balance between processing power and real-time execution; our
approach combines the General Cross Correlation (GCC) with
the Delay and Sum Beamforming (DSB) algorithm, such that, less
than 50% of the DSB computation is necessary to locate the
sound source.

Index Terms—DSB, GCC, algorithm interface, localization,
FPGA

I. INTRODUCTION

The auditory system of living creatures provides a vast
amount of information about their environment, which allows
them to perform, for instance, sound source localization [1].

Using several closely positioned microphones, that is, a
microphone array, it is possible to listen to sound coming from
one specific direction, while reducing noise and interference
sound coming from others. This signal processing technique is
called beamforming. Rapid advancement in adaptive
beamforming applications such as sonar and radar algorithms
has greatly increased the computation and communication
demands on beamforming arrays; this is particularly important
for applications that require autonomous and real-time
execution [2]. Parallel processing applied to beamforming not
only reduces execution time, power consumption and costs but
also increase scalability and dependability [3]. In most cases, a
parallel architecture guarantees the highest throughput at the
cost of bigger area and resource utilization. Architecture
complexity increases with requirements such as flexibility and
adaptability. Amdahl’s law provides more details on parallelism
constraint [4]; however, the primary determinant of
performance nowadays is power efficiency, rather than
insufficient area or frequency [5]. In general, power efficiency
can be achieved by reducing either switching activity or
resource utilization [6]. Other approaches to improve power
consumption are discussed in [7, 8].

Since sequential implementation of beamforming algorithms
with many microphones presents a significant computational

C. Ibala is with Department of Electronics and Computer Engineering,
University of Limerick, Ireland (e-mail: sibala@acm.org)

F. Escobar, X. Chang and C. Valderrama are with Electronics and
Microelectronics Department, Faculty of Engineering, University of Mons,
Belgium (e-mails: {fernando.escobar,carlos.valderrama}@umons.ac.be)

challenge in real-time processing, our contributions in this work
can be summarized as follows:

We combine the advantages of two well-known algorithms:
the GCC (Generalize Cross Correlation) and the DSB (Delay
and Sum Beamforming). On one hand, the DSB algorithm is
easy to implement and accurate for localization, but requires
large computational power; however, the GCC is a faster
algorithm, capable of providing, at least, the direction of arrival
(angle) of the sound source. By using this angle we can restrain
the DSB search area to accelerate its computation.

Consider Figure 1 where there is an example of a FOV for a
sound source located at 2.5 meters above the microphone array
at 45 degrees from the center. By using our hybrid algorithm the
sound source is located faster since the FOV is reduced, as
shown in Figure 2. The scale at the right side of Figure 1 is the
Steered Response Power (SRP) which will be detailed later.

Space y dimension [m]
n

05/

Space x dimansion [m)

Figure 1. Steered Power Response (SRP) with one sound source,
obtained with the DSB algorithm.

0.035
Flom
oS

Flom

Spaca y dimension [m|
"

oos

3 2 -1 o 1 2 3
Space x dimension [m]

Figure 2. Steered Power Response (SRP) with one sound source,
obtained with the GCC-DSB algorithm.

Copyright © 2012 by Department of Microelectronics & Computer Science, Technical University of Lodz

100 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

The remainder of this paper will be organized as follows:
In Section II we discuss the specification of the hardware used
to capture the signals. Section III presents an explanation of
the beamforming algorithms. In Section IV, the algorithm’s
workload is explained and profiled and compared. In Section
V we formulate the problem and explain our contribution. In
Section VI we discuss the statisctics obtained; we also show
full plots of the algorithm’s profiles and present an estimate of
resource utilization when implementing the DSB algorithm. In
Section VII we advice on further work and conclude this one.

II. HARDWARE ACQUISITON SYSTEM

Although the microphone’s characteristics do not have any
direct implication in the computational complexity of a
beamforming algorithm, they play a crucial role in the
architecture requirements, in terms of interfacing and
throughput. We briefly describe our system’s specifications.

A. Microphone Characteristics

The microphone is a sensor for capturing the small
changes in air pressure (sound) and converting them into an
electrical signal [9]. The microphones used to record signals
are the Miniature Electro-Mechanical System Microphone
(MEMS). For instance, the ADMP421 MEMS [10, 12] is an
omni-directional microphone, that is, equally sensitive to
sound coming from all directions regardless of its orientation.
Figure 2.a shows the functional block of the ADMP421. It
includes an Analog to Digital Converter (ADC) for signal
sampling at a rate of 48 KHz and generates a 2.4MHz Sigma-
Delta (A-X) fourth-order, digitally modulated data by using a
Pulse Density Modulator (PDM). The Power Management and
the Channel Select are both hot swapping modules. A sub-
cardioid response microphone shown in Figure 2.b would be
enough to reproduce this work.

ADMP421

POWER CHANNEL
| MANAGEMENT ‘ SELECT 181
A
S
oo =
£3 g (b)
(a) 1 Sub-cardioid
Block Diagram 5 response 270

Figure 2. ADMP421 micro-MEMS.

B. Acquisition Hardware Specification

Figure 3 represents the overall acquisition and processing
system used. Instead of a Digital Signal Processor, a Field
Programmable Gate-Arrays (FPGA) is used providing the
required flexibility to implement the algorithms while
supporting MEMS scalability and data synchronization. On
the application software side, the FTDI (Future Technology
Device international) [11] is a USB to Parallel FIFO interface,
connects the FPGA to a PC. The FTDI is only necessary for
signal integrity verification purpose. Therefore the data rate
through the USB has not implication to our application.

R —
PC FTDI rxe | FPGA iﬂ
RXE
Driver Rp
'-!-;ﬂ
FrooDae —r—)
— —

Figure 3. Acquisition sytem block diagram.

The FPGA front-end requires a A-X demodulator to
recover data coming from each micro-MEM at a frequency of
2.4 MHz. Demodulation can be perfomed by using a FIR
(Finite Impulse Response), CIC (Cascaded Integrator Comb)
or Kalman filter, among others [13]. In this work, a CIC filter
is employed. It achieves downsampling (decimation) without
using complex hardware structures such us multipliers [14].
A downsampling factor allows reducing sampling frequency
from 2.4 Mhz to 48 KHz.

III. SOUND SOURCE LOCALIZATION
AND BEAMFORMING PRINCIPLES

A. Beamforming Principle

One of the most important functionalities of microphone
arrays is to extract the speech of interest from its observation
corrupted by noise, reverberation, and competing sound sources.
This is done by aiming the beam towards the desired sound
source [16].

Beamforming’s basic idea is to sum up the contribution of
each microphone; as a result, signals from this so called “look-
direction” are reinforced while signals from all the other
directions are attenuated [16].

The response of a linear array of N sensors, with a uniform
inter-element spacing d, is known as directivity pattern D. D is a
function of the direction ¢ and frequency f. The far-field
directivity pattern is given by equation (1):

j2mnd cos ¢

N
DU @) =) walf)-e 7 (M
n=0

e w,(f) is a complex weight associated to the n** sensor;

e ¢ being the angle measured from the array axis in the
horizontal plane;

e Ais the wavelength;

e 1 = |r|is the radial distance from the sound source to the
microphone aperture;

e f is the working frequency;

e d is the distance between two consecutive microphones.

The far-field directivity pattern applies to planar wave
fronts respecting equation (2), with |r| as the sound source
minimum distance to the sensors.

2(Nd)?
A

2)

| >

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012 101

A simple horizontal directivity for equally weighted sensors
wy, (f) = 1/N is shown by the bold line of Figure 5, illustrating
the directional nature of the array response. From the directivity
pattern, we see that the sensor array is capable of enhancing a
signal arriving from a certain direction with respect to signals
arriving from all other directions.

[D(f,8)|

- steered
- beam pattern

_ ¥ Y w5 PR
o 20 40 &0 80 100 120 140 160 180

 (degrees)

Figure 5. Unsteered and steered (¢p=45°) directivity patterns
(f =1kHz,N=10,d =0.15m) [19].

In general, the complex weighting w, (f) can be expressed
by its amplitude and phase as shown by equation (4):

wa(f) = ay(f) - /P (€)

where a, (f) and ¢, (f) are frequency dependent amplitude and
phase. By modifying the amplitude a, (f) we can modify the
shape of the directivity pattern. Similarly, by modifying the
phase ¢, (f), we can control the angular location of the response
main lobe. Thus, the response of the array can be controlled to
enhance the signal arriving from a specific direction.

B. Sound Localization Algorithms

There are two major groups of microphone-array processing
algorithms: time-invariant and adaptive [9]. The first group is
fast and simple to get a real-time implementation. Acoustic
adaptive algorithms are able to automatically adapt their
response to different weightings or time-delays, however, they
require more CPU power and are complex to implement. Thus,
only the DSB and GCC-PHAT will be used for this work.

1) GCC-PHAT

The Generalized Cross Correlation (GCC) algorithm returns
an angle ¢ which is the sound source direction of arrival
(DOA). To compute ¢, the GCC uses the estimation of the
temporal shift between two microphones that lead to the
maximum cross-correlation function between them as in
equation (4):

A;j= arg, maxR (k) 4)

The cross correlation between two microphones is computed
by taking the inverse Fourier transform of the product of each
microphone’s FFT (Fast Fourier Transform) and the conjugate
of the other’s FFT as in equation (5).

R(k) = IFFT (FFT(f(t)). FFT*(g(t))) (5)

FFT(f(t)) is the Fourier transform of the signal at the
microphone i, and FF T*(g(t)) is the Fourier transform
conjugate of the signal at the microphone j. In order to correct
the effect of phase, and improve robustness against noise and
other undesired effects, there is a correction called PHAT, i.e.
phase transform that can be applied. Equation (5) then becomes:

(6)

R(k) =1FFT(FFT(f(t)).FFT*(g(®)))

|FFT(£(®). FFT*(9(®)|"

Equation (6) is defined as the GCC-PHAT; B is a coefficient
factor in the interval of]0, 1[. The IFFT is performed to return
back to time domain and extract the corresponding value of
index k. The value of k can be computed by taking the index of
the maximum value from the GCC-PHAT. Using the far field
approximation, the cosine of the angle of arrival, measured by
microphones i and j can be computed as follows:

kv, (7

wheref; is the sampling frequency, d;; is the distance between
microphone i and j, and v is the sound speed. Because every
pair of microphones can provide one angle, the results from
them can be combined as:

b=l 24, ®)

N i=l j=i+l

Note that the GCC computation load is associated to the
number of cross-correlation it needs to compute. That number
is modeled by equation (9). P takes the value of 2 and N is the
number of microphones:

€ = s ©)
PI(N — P)!

2) DSB - SRP (Time domain approach)

The DSB is a beamforming algorithm which uses a
predefined Field Of View (FOV) and resolution to compute its
Steered Response Power (SRP), which will be explained below.
An FOV is the region in the space where the sound source is
susceptible to be found and the resolution is the measurement of
the smallest distinguishable region, as shown in Figure 6.

The FOV size and shape is application dependent. Figure 6
shows an example of an FOV region of size 150x150 cm? split

102 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

into 9 small squares of size 50x50 ¢cm’. The number of small
squares (NOSS) is related to the FOV resolution as defined as in
equation (10)

Fov.~ L-H
Resolution Ax - Ay

NoSS = (10)

L

e A0em ...,

NoSS = 1.50 x 1.50 _ [:) : R H 5 H
T 050%x050 i .t e &
T TN e .

150cm | ¢ 4 1 5 1 6 %

T m

AY i} 7 4+ &8 b o8

Slem E s i - E L E
o)

1 AX B c D

S0em

Figure 6. 2D 3x3 FOV with 150cm x 150cm size
and a 50cm x 50cm resolution.

The point in the FOV with the highest Steered Response
Power (SRP) is where the sound source is located. Before
computing the SRP, the signal amplitude must be corrected
according to its phase by applying a B-PHAT operation. The
DSB B-PHAT is modeled by equation (11).

X
W= xpr

(11)
X(f) is the signal spectrum and 3 is a constant in the interval
10, 1[. if B = 1 the magnitude influence is totally removed. The
modified spectrum W(f) will then be used as an input to the
IFFT using equation (12) before computing the SRP.

w(n) = %me(f)eﬁ"ff df (12)

This work propose that IFFT module be implemented using
the FFT architecture by inverting the imaginary and real part as
shown in Figure 7. This computation methodology increase
modules re-usability. The FFT module will be detailed later.

..............................

Figure 7. Computing the IFFT with FFT processing element.

The SRP at the point i (with 0 <i <Ngq) is defined as in
equation (13).

Ns

N N
SRE, = Z[(zwinxn (t—1,))2 _Zwiznxrzz (t-7,)] (13)
n=l1

t=1 n=1

where x,,(t) is the sample recorded by the n., microphone at
time 7, w;, is the weight of the point 7 relative to microphone n
and is computed as in equation (14).

1/d,,

.
> 1/d,
n=1

Win =

(14)

d,, is the distance of the i"™ small square (SS) to the n™
microphone. It is computed as in (15):

dyy =0 =20+ (-, (15)

The pairs (x;,y;) and (x,,y,) are respectively the
coordinates of point i and the microphone 7.

3) DSB-SRP (Frequency domain approach)

Another approach to compute the SRP using the principle of
Delay and Sum Beamforming is encountered in the frequency
domain. Since the GCC-PHAT algorithm provides a cross-
spectrum between the signals from two microphones, it is
expected that this value is highest when the signals are in phase
ie. at their corresponding delay index on the GCC-PHAT
output.

The difference between this approach and the previous one
is that, for each point in the FOV, it is only required to compute
the theoretical delay between all pairs of microphones; using
this index, the corresponding energy value in the cross-spectrum
output (GCC-PHAT) is extracted. The energy from all pairs of
microphones is extracted using theoretical delays and added up
for each point in the FOV.

Compared to the time-domain approach, this algorithm skips
the steps from equation (11) to (14) which have a huge
computational cost.

If d; and d; are the distances from point p to microphones i
and j, we denote d;;as the difference between them. The
theoretical arrival delay between them is given by equation
(16):

_dij*fs

ij — v
s

(16)

Bearing in mind equation (6), the SRP is therefore computed
as in equation (17)

N
SRP =Y’

k=

R(zy)

G

an

N
=k

k#j

J

+1

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012 103

IV. ACQUISITION BLOCK DIAGRAM AND ALGORITHM
COMPUTATIONAL COMPARISON

Figure 8 shows a proposed block diagram to implement and
specially analyse both the GCC and DSB algorithms in terms of
their computational complexity. The branch where the output is
an “incidence angle”, represents the GCC and the one with
“source localization” output represents the DSB.

Both algorithms share the demodulator (A-X), framing,
Voice Activity Detector (VAD). They also share the Fast
Fourier Transform (FFT) module, since it is required for the
GCC and for the B-PHAT operation in DSB as shown in
Equation (11). Each module will be presented briefly before
introducing our hybrid algorithm.

For the sake of clarity and comparison, Figure 9 shows a
block diagram of the DSB-SRP algorithm; it is important to not
that this algorithm skips the computation of equations (13) and
(14), but requires the execution of the GCC-PHAT algorithm
first. As will be seen later in the paper, our proposal profits from
the GCC-PHAT angle detection to reduce the FOV and then
compute the SRP.

Cross-combinaison

Incidence

Volce Activity

Figure 8. GCC (upper branch) and DSB-Time domain (lower branch)
functional block diagrams. Both algorithms can be computed in parallel.

O [2 -4 H FFT }-EFraming

v Vs

Cross
Correlation

SRP freq.
domain

Figure 9. DSB algorithm in the Frequency Domain. A whole GCC is required
before starting the computation of the Steered Power Response.

The demodulated CIC signal is transmitted to the framing;
then, the VAD modules which decide if the content of the signal
is a noise or a sound source to trigger the start of the localization
algorithms. Otherwise that frame is ignored as shown by the
switch in Figure 8.

A. Framing and Voice Activity Detector

The framing module cuts the audio signal in frames of (256
or more samples) each sample being 2 bytes long. The VAD
module is used to compute noise mean and variance over the
10 first frames. These values are used to determine the mean
(18), variance (19) and threshold (20) equations, each incoming
frame are compared to that threshold. If the computed value is
lower than the threshold we assume that we are in presence of a
noisy frame; otherwise there is a sound source.

S (18)
" Ns
Ns ..2
2 _ &i=oXi o (19)
? Ns #

where L is the mean, o2 is the variance, Ns is the number of
samples in the frames, x; is the value of sample i. Sound
detection threshold can be computed as in equation (20)
(where cst is a constant taken with a value> 3):

Niresn = 1t cst-o (20)

B. FFT Implementation Algorithm

After detecting a sound source in the signal frame, the
VAD triggers FFT computation which is modelled by
equation (21).

+00

X(H) =] x(t)e I2m tdt 1)

— 00

where x(t) and X(f) are the signal input and output and f the
frequency. For computation speed, a Fast Fourier Transform
(FFT) which is a fast DFT algorithm that reduces the
computing burden from N2 to N -log, N is used. Since FFT
processors using a radix-4 architecture have fewer
multiplications than processors using radix-2 [15], they are
prefered in order to reduce the memory access rate and
arithmetic workload, hence, power consumption.

It is important to remark a few assumptions that have been
adopted for this work; on one hand, a far-field approximation
is used. (cf equation (2)), and the microphone array is linear.

As the sound source is far enough from the microphone
array, the difference between the signal received by the n™®
microphone x,, and the center of the array is a pure delay [17].
That delay in time units can be expressed as in equation (22):

nzfs-dncosgb 22)
c

where f; is the sample frequency, d,, is the extra distance
travelled by the sound wave to reach the n* sensor compared

104 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

to the reference sensor, ¢ is the wave front incident angle, and
¢ being the sound speed.
e No multipath contribution is taken into account.

e The only noise sources are the microphones themselves
and stationary noise.

C. GCC-PHAT Compuational Load

Because the cross-correlation is performed between pairs
of microphones, then, from equation (9), P equals 2 and N the
number of microphones in the array e.g. 4, 8, 16, 32, 64. For
the previous list, the number of cross-correlation will vary as
described by Ck, e.g. 6, 28, 120, 496, 2016. This leads to a
CPU power increase with the number of microphones. To
reduce the CPU power requirements with the same amount of
microphones, the configuration can be changed from one
microphone array to a two smaller microphone sub-arrays of
equal amount of units. The number of cross-correlations will
then respectively vary as 2, 12, 56, 240, 982 which represents
more than 50% computation reduction at the cost of 2 to 3
degree loss of accuracy of the sound source localization,
according to our tests.

multiplication, division and square root) required to obtain the
direction of arrival of the sound source denoted above as ¢.
We include all operations required by equation (6), (7) and
(8), except for the IFFT, which is performed in both
algorithms as shown in Figure 8. This computation was
perform with the audio frames of N = 512 samples and with

N = 4 microphones.

Assuming that all operations are performed in one clock
cycle except the division and square root (8 clock cycles using
Xilinx IP Cores), the number of clock cycles per frame
(NCCF) is given by equation (23).

NCCF = Mult+ Add + Blk,,,; +8.(Div+ Sgrt) (23)

Using equation (23) and TABLE I the throughput of the
GCC with clock running at certain speed can be computed.
With Ck being the total number of cross-correlations,
TABLEII gives the GCC throughput computed per frame

sequentially. Parallelized operations of TABLE I could reduce
the GCC throughput.

TABLE II
We analyzed the blocks listed in TABLE I from Figure §; GCC SEQUENTIAL THROUGHPUT
TABLE 1 shows the cpmputatlon burden and the number GCC (Clock Speed) 200 MHz 200 Miz 600 MHz
of sequential operations (memory access, addition,
Throughput 0.55 ms 0.28 ms 0.14ms
TABLEI
GCC COMPUTATION BURDEN D. DSB Compuational Load
geca:::cl:-+ Ang‘fe ((!fteftiollz ¥ Rk The DSB algorithm combines accurate sound source
localization with the flexibility of having pre-computed
Bikreaa | (CE-N,)+CE-N, 6144 fficients i Th fficient ioht and
Wit (CP N, - complez) + (3CF - N,) ¥ | 18433 coefficients if necessary. Those coefficients (weig - an
(1) delay) could then be stored in an FPGA BRAM or in an
Add (2-N,)+(2-C2-N,)+(CE-N,)+ | 10245 external memory.
(cr—1) TABLE III presents the computation weight of the DSB
Div (2-CE-N,)+ (1) 6145 for different value of the NOSS; here, a purely sequential
Sqrt (CE-N,) 3072 execution is assumed.
TABLE III
DSB COMPUTATION BURDEN
Localization Noos =256 | Nogs =32 | Npyy =25 | Ny =12
Blkreaa | [(N) + (N5 - N) + {N)] - Noss + Nous + 1575168 196896 153825 73836
(2Ns & N)] 'Noaa
Mult | [(Ne-N)+ (Ve - N)+ (Ny) +1] - Nows + || 2228480 | 278560 | 217625 104460
(QNB i N)] * Nau
Add (Ns- (N 1))+ (N,- (N—-1))+ (N,) + 1572864 196608 153600 73728
(Na)] 3 Nass + [(Ns " Jw)] 2 Nosa
Div 2N, - N - Nogs 1048576 131072 102400 49152
Sqrt (N -N)| - Nogs 524288 65536 51200 24576

TABLE IV shows the DSB throughput for a NoSS = 256 at

For a sound source localization using a sampling frequency

different clock speeds.

DSB SERIAL THROUGHPUT WITH NOSS =256

TABLE IV

DSB (Clock Speed)

200 MHz

400 MHz

600 MHz

Throughput

90 ms

45 ms

30 ms

of 44.1 KHz and a size frame of 512, to achieve a real-time
application, the localization must be performed in less than
11.6 ms. TABLE IV shows that from 200 MHz to 600 HMz the
throughput time is superior to 11.6 ms. Based on that challenge
this work will present an hybrid algorithm to reduce the NOSS
number.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012 105

The GCC computation burden only depends on the number
of microphones whereas in the DSB, it’s dependent on the
number of microphones, the FOV size and resolution.
Multiple sound source tracking is possible with DSB but not
with GCC. Globally we can say that the GCC algorithm is
faster than the DSB, but the localization made with the DSB is
more accurate (GCC just provides the angular direction). A
possible way to improve the localization using GCC is to use
two sub microphone arrays. But this method is error sensitive,
because a small error on the estimation of both angles, results
in a false estimation of the sound source position.

V. CONTRIBUTION

Our contribution in this work is to accelerate DSB
computation by using the GCC. To illustrate the problem we
will use a 4-microphone array as represented in Figure 10. The
search region limited by the angles ¢ + € can be obtained by
applying first the GCC algorithm, thus reducing the search
spectrum and the number of DSB computations for the same
resolution.

The basic idea of this approach is to create a reduced
detection zone by drawing two lines; one above and the other
below the GCC detected angle with an inclination t¢€ chosen by
the user Figure 10 shows one case of this approach, the
remainders are mathematically detailed below. Our algorithm
can be described as follows:

For every angle ¢ returned by the GCC, we will assume
that:

0<¢ <180
L

[] I [] I I I
F+—t-+—1—-+—-
e EE e

] 1 1 1] 1
Ry e MR R eold M T
h o il bl bowd =

1 1 1 1 I 1
B i g e [&
F 4 == == ==
EHETE S R

I]] 1 I I
S n i S S S H
I G S g S R PR

I I] I I I
F T T =E s
I WY M P PR SRS

I I i | I |
B i A s B R 2
Pt ===
O i 1

I 1] I I]
g (o e e == i 1 £

Ay bl

Az A B C D

Figure 10. FOV of the GCC-DSB.

There are two special case angles, which are the upper
border of the FOV. These two angles denoted as §; and §, are
defined as follows:

5y = arcan (75)
, = arctan /2
H

6, = 180° — arctan (m)

- If (¢p — € < 0) ,the FOV is delimited by:
005:{(5) 0} {(3). - tants +2))}:
- If(¢p —e>0and ¢+ & <d,) the FOV is:

S CH N CNCRS)

- If(¢p — €< d;and ¢ + € > d,) the FOV is:
{0,03}; {(g) , (% ~tan(¢ — s))} ; {%, H};{H - cotan(¢p + €) ,H}

- If(¢p — &> dpand @ + € < 90°) the FOV is:
{0,0}; {H - cotan(¢p — €) ,H}; {H - cotan(¢p + &) ,H}

- If(¢p — e < d, and ¢ + &€ > d,) the FOV is:
00 ot - .1 ()} {(2).(2) o +)

- If(¢p —€>d, and ¢ + € < 180°) the FOV is:
00:{(2).(2) 0o -} {(2). (2) o + 0)
: If (¢p — £ < 180° and (¢p + € > 180°) the FOV is:
004 {(2).(2) nco - 2}:{(2).0}
The number of test cases cover above is dependent of the

angle range cover by ¢ and the precision (€) of the GCC
localization.

Figure 11. Region search description.

106 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

A. Memory Region Access
The FPGA internal memory structure can be read by
implementing a simple counter. Figure 11 shows that the
numbers encapsulated in the cone between hy, and hji cannot be
determined easily. The accesses to those values in our hybrid
algorithm are complex and governed by equations (24) and (25).

h, =n-Ax-tan(¢ — ¢) (24)

hy =n-Ax-tan(¢ + ¢€) (25)

The hy and h} are the lowest and highest line, they
represents respectively the lines passing by the points {O,X}
and {O,Z} in Figure 10.

In Figure 11 Othe region between these two points h; and
h{ represents the addresses that need to be computed by
algorithm 1 using equation (23) and (24) [21]. Every Small
Square of the FOV has a number assigned to it. With that
number additional information such as his weight and his shift
can be retrieved. In our approach the GCC is computed in
middle of the microphone array FOV. Besides the GCC

computation, two correctives factors, Xz, and Y, are

required. Note that algorithm 1 shows only the steps required
when ¢ < 90°. The Division by Ax and Ay in Algorithm 1
shows that the unitary resolution or a power of 2 will be a
better choice to avoid costly division implementation.

if (¢ <90)
ent_wr_blk = 0;
for(s = O;i = i + Az;i € 52 — 1)
h,'.l; = ('i.-[—l) < ky;

if (hi > H) o
mazj = ——LAJH_CEL . :
else

mazy = (2 +1) - k;

for(j = 0;7 = 7 + Ay; j < ceil(maz;))
piz = iAx;
piy = jAy + iko;
nb=piz + Toffsat + [ﬂoor(%)] *Yof fsets
ent_wr_blk = ent_wr_blk + 1;

else
for(i = 0;i =i+ Az;i < 55= — 1)
h;l; = (i-[-.'i) < ky;

if (b > H) "
H—ceil(hy) .
maz; = 4&9_)’
else

mazj = (i +1) - k;
for(j = 0;j = j + Ay;j < ceil(maz;y))
piz = ilAx;
piy = jAy + ikg;
nb= Toffset — PIT + [ﬂoor(%ﬁ)] “Yof fsets
ent_wr_blk = ent_wr_blk + 1;

Algorithm 1. Algorithm to interface the GCC with the DSB.

B. Memory Size After the GCC
The size of BLOCKRAM to contain the new FOV
produced by algorithm 1 cannot be known in advance as it is

related to the angle ¢. Therefore the system needs to be
evaluated to determine the largest possible BLOCKRAM.

The only accurate procedure to determine the GCC NOSS
is to test for all possible angles ¢ €[0..180] the highest NOSS

for a given precision € and set the memory size accordingly.
Figure 12 shows results for 3 values of € equal to 5, 10 and
15; for every € around ¢ = [70°...110°] the NOSS is the
highest and a symmetry can be seen around ¢ = 90°. Angle €
can be reduced by improving GCC accuracy, leading to a
smaller GCC NOSS (See Figure 10). Therefore the DSB
computation speed is increased.

C. Hybrid Algorithm Parrallelism

Recall from Figure 8 the block diagram of the GCC and
DSB acquisition chain; with this new algorithm, Figure 13
shows the new execution chain. Figure 13 shows that the DSB
can interpret the result from the GCC as shown in Algorithm 1
described above.

Figure 13 also shows that the entire computation of the
DSB cannot be executed in parallel with the GCC as the DSB
require the GCC angle to start its computation. As a positive
note, the DSB can start his computation as the FOV
BLOCKRAM from the GCC is being filled.

100

S0

80

Reduced NOSS

701
60 |
S0

a0t

o
N T
\,M-\Lv
|
0 L 1 1 L 1 1 L Angle
0 20 40 60 80 100 120 140 160 180

301
20

10F

Figure 12. Number of small squares for different values of epsilon.

[Driver |

Soume
Loalization

oh of
FFT
DeEs
I
SRP

Q=

—

Figure 13. GCC-DSB and DSB —DSB block diagram.

—

In Figure 13 the aim of the DSB drivers is to use the first
DSB localization point to define a reduced region around this
detection, if the moving speed of the sound source is known in
advance see Figure 14. The next region where the sound source
should be tracked can be foretold as shown in Figure 14. The
region size depends of the distance traveled by the sound
source between two frames as described in equation (26).

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012

Xnipi = Yonip = VI,

K trpt

(26)

where v is the speed of the sound source (which can be a

human walking as he talks) and 7}, is the throughput, the

rpt
time between two frame computations. The DSB-DSB
approach is only possible if a sound source is detected over
multiple consecutives audio frames and that the sound source
remain in the region we thought it would be. Therefore in
Figure 14 the transition 3 is an illegal transition. The DSB-
DSB would be a great improvement over GCC-DSB if it was
possible to implement it standalone as all the logic resources
use for the GCC computation will no longer be necessary.

107

Lyt_

Figure 14. Improvement of the GCC-DSB using DSB —~DSB.

TABLE V
DSB AND GCC-DSB COMPUTATION BURDEN
Localization Nogs =256 | Nyge = 32 Niogs =25 Nyss =12
(DSB) (DSB+GCC) | (DSB+GCC) | (DSB+GCC)
¢ = 53.5 ¢ =435 ¢ =20
Blkyeaa | (V) + (Ns - N) + (N)] - Nogs + Nogs + || 1575168 203040 159969 79980
((2Ng - N)| - Noss
Mult | [(Ne-N)+ (Vs N)+ (NVs) + 1] - Noga + | 2228480 296993 236058 122893
(2Ng+ N)| » Noss
Add (Ns-(N=1))+{Ns-(N=1))+(Ns)+ || 1572864 206853 163845 83973
(Ns)] B Nass o= [(Ns = N)] N Noss
Div 2N, - N] - Nggs 1048576 137217 108545 55297
Sqrt (No - N)| Nogs 524288 68608 54272 27648

VI.RESULTS AND DISCUSSION

This section will present the computation methodology
used to accelerate the DSB localization and approximations
made to reduce design resources utilization, improve
implementation flexibility for real-time applications

MATLAB and C are used as verification engine and to
pre-compute twiddle factor for the FFT, weights coefficients
equation (14) and the delay in sample equation (16).
TABLE VI clearly shows that pre-loading this constants on
the FPGA, can improve the design speed and reduce logic
used. No FPGA multiplications or divisions are necessary in
pre-computed values.

TABLE VI
WEIGHT AND SHIFT COMPUTATION BOARD ML505

Resources Preloaded Constants Non-Preloaded
Slice Registers 8 1% | 8192 28%
SLICE LUTs 8 1% | 6227 21%
RAM 2 3% | 7 11%
DSP48 0 0% | 142 9%
Estimate Speed | 450 MHz 80.64 MHz

A. GCC- DSB Compared with DSB

TABLE V shows that the number of computations
decreases drastically with the NOSS, therefore our
contributions become competitive as shown in TABLE V
comparing a NOSS (256) DSB to a combined GCC-DSB
(NOSS=32) with a ¢ = 53.5° the computation reduction is

around 80%. TABLE V also shows that for small angles the
computation point’s decrease which will be the opposite if the
FOV was rectangular. This last result is FOV geometry
dependent.

Comparing TABLE V (DSB+GCC, NOSS = 32) and the
TABLE III (DSB, NOSS = 32) representing the DSB-DSB
algorithm the difference of throughput is given by TABLE 11
which is quite negligeable, the advantage of the DSB-DSB as
state above will then be only ressource utilization.

The logic resources necessary to generate the interface
between GCC and the DSB are negligible but require an
intellectual propriety (IP) core to compute operations such as
tangent.

TABLE VII compared with TABLE IV shows that above
200 MHz the real-time constrainst pose in Section IV.D is
resolved with our Hybrid algorithm as {5.9 ms and 3.93 ms}
are in inside the range [0..11.6] ms.

TABLE VII
GCC-DSB TROUGHPUT COMPARED TO TABLE IV
GCC-DSB (Clock Speed) MHz 200 400 600
Throughput(ms) NOSS = 32 11.75 5.9 3.93

Another profiling approach for both algorithms was done
to see the advangage of one over the other under a sequential
implementation. All algorithms were described in MATLAB
but since most complex functions such as FFTs, matrix
multiplication and trigonometric computation, are optimized,
it was not possible to use MATLAB’s profiler. We decided to

108 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

describe them in terms of the amount of multiply-accumulates
they require to execute.

First we evaluated the effect of grid size, which affects the
NOSS and therefore the computation load; we also changed
the number of microphones and obtained the results shown in
Figure 15, (time domain DSB), and Figure 16 (frequency
domain DSB); they show the multiply-accumulate load of the
DSB when increasing the number of microphones. The dashed
line is for the smallest grid resolution (4 cm x 4cm) and is the
most expensive in terms of the amount multiply-accumulates
required since there are more points to evaluate. The
importance here, is to see that the increment of resolution
affects more than the increase of microphones. Note, from the
axis scale, that the time domain approach is more expensive
than the frequency one, in terms of computational load.

% 10" Time-DSB cost vs grid resolution
7 1 P
====0.04m &
-o=0.08m 4
61 —=—012m| ':'
@ *+—0.16m /S
b1 ,
g |[=mre2m J
st L /
E 7
=2 ¢
8 s
< s
24
a P
s /
= 8} '1'
“6 'I’
] P
‘g 2 {_;’
= # e
= -~ -

14 16 18 20

6 8 10 2
Number of Microphones

Figure 15. Time domain DSB Computation load for different FOV resolution
and number of microphones.

x10° Frequency-DSE cost vs grid resolution
147 T - . H g
====0.04m
=&-=008m r

12/ —=—p12m|)”
o —*—0.16m Pre
‘7_; =TTt02m ’/

10! s
E 2
3 R
8 ’I
‘lt a8 o
F -
o 4
=2 d
3 o
= 6 e
B P a
5 -~ i
8 4 WP L
E -
3
=

6 8 16 1-2 1:1 'I-S 1-3 20
Number of Microphones

Figure 16. Frequency domain DSB Computation load for different FOV
resolution and number of microphones.

For the following graphs, time domain outputs are shown
in red whilst frequency domain ones are shown in blue. Black
lines at the top account for the DSB behaviour in the time
domain, whilst the ones on the bottom, for the frequency
domain one.

Multiply accumulate load for the entire DSB algorithm
compared to one for the GCC-DSB, yields Figure 17. We can
see that the DSB grows at a higher rate than the GCC-DSB;
this means that we could increase the number of microphones
at low computational cost with the new approach since the
increment is not as big as for the DSB. We could conclude
from this graph that, under the same implementation device,
be it FPGA, CPU, GPU, etc, the GCC-DSB algorithm would
be able to handle signals from more microphones than the
DSB, at lower computational cost.

Figure 18 shows the amount of Multiply-Accumulate vs
Frame Size, for the DSB in the time and frequency domains,
compared to the GCC-DSB also in both domains, at different
resolutions. When the frame size is small, there is a difference
of around 1| order of magnitude between DSB vs GCC-DSB
(frequency domain, i.e. lower lines); however, as the frame
size increases, this difference is reduced significantly;
therefore, even when the GCC-DSB is still faster, its
performance compared to the DSB will be barely perceptible
for small frames. For the time domain approach, performance
difference is kept irrespective of the frame size.

phone and FOV r

tion effect

-----DSB0.04 m
——DSBO.im
-¢-pSBO.Bm ||
—*—GCC-DSB0.04m
——GCC-DSBO.1m
== GCC-DSB0.18 m

Number of Multiply-Accumulate

Number of Microphones
Figure 17. DSB vs DSB-GCC M.A. load Lines on the upper part are
computed using the time domain approach whereas the lower ones are for the
frequency domain.

Frame size effects (16) mics

Number of Multiply-Accumulate

====:GCC-DSB 0.02m
——GCC-DSB0.04m
| | —*—GCC-DSB0.08m
10 10 10" 10°
Frame Size [samples]
Figure 18. Effects of varying the frame size on both, time (upper lines) and
frequency (lower lines) domain, approaches.

10

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. 3, NO. 3,2012 109

Finally, Figure 19 shows a comparison of the multiply-
accumulate load between the DSB when varying the value of
epsilon; an increase of around one order of magnitude in terms
of multiply accumulates, is obtained when changing epsilon
from 5 degrees up to 50 degrees. For this plot we assumed the
sound source is located at 90 degrees from the center of the
array, since the increase range of epsilon bigger. For the time
domain approach (upper lines), this speedup is kept
irrespective of the grid resolution, while for the frequency
domain one, the speed up decreases with less resolution
(bigger small squares). Increase in computational load
between 5 and 10 degrees is small for the time, as well as, for
the frequency domain approaches.

Epsilon value effects (16) mics

et ——GCC-DSB, epsilon:5° ||
-l —*— GCC-DSB, epsilon: 10° 1
s == GCC-DSB, epsilon: 50° ||

Number of Multiply-Accumulate
3

10’
Grid Resolution [m]

Figure 19. Effects of changing the value of epsilon.

VII. CONCLUSION AND FURTHER WORK

This work has shown, at the algorithmic level, that it was
possible to improve the speed of sound source localization with
our hybrid approach, GCC-DSB compared to the DSB
(TABLE VII). At the architectural level we showed there is the
possibility to merge the acquisition chain of both algorithms
(see Figure 8). This hybrid approach opens the doors to, speed
improvements in real applications such as beamforming.

The GCC-DSB proposed algorithm performs better than the
DSB independently of the domain in which signals are
processed. The analysis employed showed improvements more
susceptible in the frequency, to variables such as number of
microphones, frame size and grid resolution; nonetheless, the
time domain approach is much heavier to compute.

Since the frequency DSB is based on the GCC-PHAT
outputs, the area cost of the hybrid algorithm is expected to be
small. A few specialized modules for computing tangents and
arccosines are required though. More detail in terms of area
consumption, power efficiency, accuracy and execution speed
is required to thoroughly establish the contribution of the
presented algorithm.

FPGA implementation and related design to consider
beamforming is proposed as future work; with the speed up
gained from the hybrid proposal, the beamforming algorithm,
as shown in Figure 20 can be implemented. If the exact
location of a sound source is found faster beamforming can

also execute faster, therefore allowing it to be applied on
moving targets with better results.

9
xy(k) s
- gz
R PR o I PO

l Iy
xy (i) - .

Figure 20. Structure of the Delay and Sum Beamformer [16].

REFERENCES

[1] Jean-Marc Valin, Frangois Michaud, and Jean Rouat, "Robust
Localization and Tracking of Simultaneous Moving Sound Sources
Using Beamforming and Particle Filtering," Robotics and Autonomous
Systems, vol. 55, no. 3, pp. 216-228, 2007.

[2] SINHA P. and GEORGE A.D. and KIM K., Parallel algorithms
forrobustbroadband MVDR beamforming, Journal of Computational
Acoustics, 2002. Vol 10, Page 69-96

[3] PRIYABRATA SINHA, ALAN D. GEORGE and KEONWOOK KIM,
“ParallelAlgorithmsforRobust ~ Broadland MVDR Beamforming”
http://www.hcs.ufl.edu/pubs/JCA2001.pdf

[4] C. CAVE, R. WASSER, Estimating Parallel Processing Speed
Multiplier”,
http://www.visisoft.us/PDF_Files/EstimatingSpeedMultipliers.pdf.

[5] J.C.H Eric S Chung, Peter A Milder and K. Mai, “Single-Chip
Heterogenous computing: Does the Future Include Custom Logic
FPGAs GPGPUs” Proceedings of IEEE/ACM International Symposium
on Microarchictecture (MICRO), Atlanta, GA, December 4-8, 2010.

[6] Fahad Qureshi, Syed Asad Alam and Oscar Gustafsson, “4K-Point FFT
Algorithms based on optimized twiddle factormultiplication for FPGAs”
The Asia Pacific Conference on Postgraduate Research in
Microelectronics and Electronics (PrimeAsia),Sanghai, Sept 22-24 2010.

[7] Sanjay Thatte, John Blaine, “How to Manage Power Consumption in
Advanced FPGAs,” Xcell Journal Xilinx Fall 2002.

[8] Hichem Belhadj, Vishal Aggrawal, Ajay Pradhan and Amal Zerrouki
“Power-Aware FPGA Design” 2009.
http://www.actel.com/documents/Power Aware WP.pdf.

[9] Ivan Tashev, Sound Capture and Processing, Wiley, Ed, 2009.

Analog Device, "Datasheet ADMP421 REV D,".

[11] FTDI UM245 USB-Parallel FIFO Development Module Datasheet
Document Reference no: FT _000202. Version 1.04 2009-12-10

[12] Analog Device “Datasheet Application Note 1003”

[13] Saman S. Abeysekera and Charayaphan Charoensak "Efficient
Realization of Sigma-Delta (2-A) Kalman Lowpass Filter in Hardware
Using FPGA” Hindawi Publishing Corporation Eurasip Journal on
Applied Signal Processing. Volume 2006, Article ID 52736, Pages 1-11
DOI 10.1155/ASP/2006/52736

[14] Altera, "Understanding CIC Compensation Filters”

[15] Weidong Li and Lars Wanhammar “Efficient Radix-4 and Radix-8
Butterfly Elements” www.es.isy.liu.se/publications/papers_and_reports/

[16] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Jacek Dmochowski,
"On Microphone Array Beamforming From a MIMO Acoustic Signal
Processing Perspective," Audio, Speech, and Language Processing, vol.
15, no. 3, pp. 1053 - 1065, March 2007.

[17] Qi Li, Manli Zhu, and Whei Li, "A portable USB-Based Microphone

Array Device For Robust Speech Recognition," in IEEE International

Conference on Acoustics, Speech and Signal Processing, Taipei, 2009,

pp. 1301 — 1304.

Christian Serge Ibala, J. Vachaudez Carlos Valderrama, “Novel interface

drivers to combine real-time localization and tracking® Submitted to

Applied Electronic 2012 Czech Republic 5-7 September 2012.

[19] Ian McCowan, “Robust Speech Recognition using Microphone Arrays”,
PhD Thesis, Queensland University of Technology, Australia, 2001.

[18

[}

110 IBALA et al.: HYBRID ALGORITHM COMPUTATION METHODOLOGY TO ACCELERATE SOUND SOURCE LOCALIZATION

Christian Serge Ibala received his MSc in 2000, he
went to work for Cadence Scotland from 2000 to
2002 then from 2003 to 2009 worked for Xilinx
Ireland. In 2008 start his PhD at the University of
Limerick (Ireland) he is working toward finishing it
in collaboration with the University of Mons
(Belgium). His research interest includes
reconfigurable architecture, Digital signal processing
and systems digital design and validation.

Fernando Escobar was born in 1985. He received
bachelor's and MSc and degrees in Electronic
Engineering from Universidad de Los Andes,
Bogotd, Colombia, in 2008 and 2011 respectively.

a S He is currently a PhD student in the Department of
=5 . Electronics and Microelectronics, University of
- Mons, Mons, Belgium. His research interests include
T high level modelling using Hardware Description
\ / Languages, SystemC and MATLAB, among others;
A his areas of expertise are computer architecture,

embedded systems, networks on chip and digital
design.

Xin Chang was born in 1988. He received MSc
degree in Embedded Computing from University of
Turku (Finland) in 2012. He is currently working as
a research assistant in the Department of Electronic
and Microelectronics, University of Mons. His
research interests include on-chip interconnection,
high-level synthesis, multiprocessor system-on-chip
and signal processing.

Carlos Valderrama’s research interests are power
processing, consumption and management. He is
active in the area of embedded applications, wireless
smart sensors for logistics, and signal processing for
biomedical and telecommunication applications,
among others. His main research activities are
methodologies and tools for the design of multi-core
architectures and SoC platforms for embedded
applications. He is currently member of several
scientific committees of international conferences
(DAC, FPL, RAW, IDT, ReConfig and Iberchip
among others). His research activity is supported by several publications and
books chapters, and tutorials.

