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Abstract—In this paper, a method for approximating a first-
order implicit fractional transfer function, that corresponds to
a frequency-bounded fractional differentiator or integrator, is
presented. The proposed method is based on a modification of the
well-known Newton’s method for iterative root approximation.
First-order implicit fractional transfer functions have several
applications in modeling and control. This type of transfer
function is the basis for the fractional lead-lag compensator.
In the following, we provide the description of our algorithm,
that enhances the existing technique, and illustrate its use in
analog and digital implementations of fractional-order systems
and controllers with relevant examples and comments.

Index Terms—fractional calculus, Newton’s method, Carlson’s
method, Matlab, implicit fractional transfer function, fractional
power zero-pole

I. INTRODUCTION

fractional-order calculus is a rapidly evolving

scientific field. It allows for more accurate modeling of

complex systems, such as those that possess memory and

hereditary properties [1]. The benefits of using fractional

calculus in control are also evident. New types of controllers

have been developed [2], [3], [4] based on the added flexibility

of the fractional-order models.

However, many problems arise in the process of implemen-

tation of fractional-order controllers. Since fractional models

are inherently complex, which follows from the fact that

they describe infinite-dimensional systems [5], deducing an

effective direct realization method is a difficult task. Therefore,

methods for approximating the fractional operators have been

developed, including both continuous and discrete approxima-

tions.

In [6] we focused on one particular continuous integer-

order approximation, derived from Newton’s method. In this

paper, we provide further information about the generalization

of this method for higher order iteration formulas as well

as describe the use of the updated second order method in

analog and digital implementation of fractional-order systems
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and controllers. In Section II the underlying method together

with its modification are summarized and applications to

fractional-order modeling are presented. In Section III our

method used for implicit first-order fractional transfer function

approximation is proposed and discussed. Applications of

this method to controller implementation are also presented

and a MATLAB realization is described. Analog and digital

realizations of the approximated fractional-order models are

discussed in Section IV. Two illustrative examples follow in

Section V. Some issues and limitations of the proposed method

are discussed in Section VI. Finally, conclusions are drawn in

Section VII.

II. APPLICATION OF NEWTON’S METHOD TO FRACTIONAL

CALCULUS

Newton’s method, also known as Newton-Rhapson method

[7], is a numerical algorithm for finding a real root of a

function f(x). It suggests that in order to solve a general
nonlinear equation f(x) = 0, the following iterative formula
can be used, given an initial estimate x0:

xk+1 = xk − f(xk)

f ′(xk)
. (1)

A modified algorithm is proposed in [8], [9] such that the

convergence of the sequence {xk} is more rapid than that
resulting from using formula (1). The corresponding formula

is called Halley’s formula:

xk+1 = xk − f(xk)

f ′(xk)− f(xk)f ′′(xk)
2f ′(xk)

. (2)

Consider now a problem of finding an nth root of a real
number. The corresponding function is f(x) = xn − A and

using (2) the following particular iteration formula is obtained:

xk+1 = xk · (n− 1)xnk + (n + 1)A

(n + 1)xnk + (n− 1)A
. (3)

For instance, to approximate
√

23 we may set x0 = 1 and
use (3) to obtain the solution. After three iterations, the results

of which are depicted in Fig. 1, we arrive at the result x =
4.795831523312707, which is accurate to 13 decimal places.

The formula (3) is considered by Carlson [10] and more

recently in [5], [11], [12]. In his paper, Carlson has shown, that

this formula holds for both even n = 2m and odd n = 2m+1
roots. The method can be applied to approximate fractional
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Fig. 1. Using the modified Newton method to approximate x =
√
23

capacitors of the form (1/s)1/n in the following way:

Gk+1(s) = Gk(s)
(n− 1)Gn

k (s) + (n + 1)H(s)

(n + 1)Gn
k (s) + (n− 1)H(s)

, (4)

H(s) =
1

s
, G0(s) = 1.

Since in this case the real variable A is replaced by the

transfer function H(s), convergence and rate of convergence
cannot be evaluated in the same way as in the case of a real-

valued function.

Consider an example. Using equation (4) we shall obtain

an approximation of a fractional capacitor 5
√

1/s. After two
iterations the following transfer functions are obtained:

G0(s) = 1,

G1(s) =
0.66667s(s + 1.5)

s(s + 0.6667)
,

G2(s) =
G21(s)

G22(s)
,

where

G21(s) = 0.4444s7 + 9.062s6 + 39.47s5 + 77.81s4

+ 82.5s3 + 47.75s2 + 13.23s + 1,

G22(s) = s7 + 13.23s6 + 47.75s5 + 82.5s4

+ 77.81s3 + 39.47s2 + 9.063s + 0.4444.

In Fig. 2 the frequency response of the obtained approx-

imation is shown. The response of the corresponding ideal

fractional capacitor is also given for comparison. It can be

seen, that the frequency range, where the approximation is

valid, is quite narrow. It is possible to improve this result by

increasing the number of formula iterations. However, in this

case the order of the obtained rational transfer function may

be very high.

It is interesting to note the relation of Newton’s method

to the fractal theory. This relation is illustrated in e.g. [13].

Further connections between fractional-order calculus and the

fractal theory as well as the arising applications are studied in

[14], [15], [16].

Next, we provide further comments about the generalization

of this method due to Householder [17]. The proposed iterative
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Fig. 2. Frequency response of Carlson’s approximation of the fractional
capacitor 5

√
1/s

process formula is given by

xn+1 = xn + d · [1/f(x)]
(d−1)

(xn)

[1/f(x)]
(d)

(xn)
, (5)

where d is the order of the resulting method. It can be easily
seen, that the original Newton’s method in (1) corresponds to

the case when d = 1 and Halley’s method in (3) is obtained
with d = 2.

This equation can easily be implemented in a CAS, such as

Maxima1, in the following way

hh(f,x,d) := x + d * diff(1/f,x,d-1) /
diff(1/f,x,d);

For example, one could generate a third-order iterative

formula for f(G) = Gn −H by using

hh(G^n-H,G,3);

After simplification the following equation is obtained:

Gn+1 = Gn · Gnum

Gden
,

where

Gnum = (n2 − 1) ·H2 + (4n2 + 2) ·GnH

+(n2 − 1) ·G2n,

Gden = (n2 − 3n + 2) ·H2 + (4n2 − 4) ·GnH

+(n2 + 3n + 2) ·G2n.

In this work we shall consider the second-order method,

which is Carlson’s original method, since it provides a compro-

mise between accuracy and efficiency, although using higher

order methods could be justified in some cases. We will use

this method for frequency-bounded implicit fractional transfer

function approximation and treat the case of a first-order

transfer function.

1Maxima is a cross-platform GPL-licensed computer algebra system and
can be obtained for free at http://maxima.sourceforge.net/
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III. APPROXIMATION METHOD FOR FIRST-ORDER

IMPLICIT FRACTIONAL TRANSFER FUNCTIONS

A. First-order Implicit Fractional Transfer Function in Mod-
eling and Control

In general, a frequency-bounded non-integer differentia-

tor/integrator may be represented by a first-order implicit

fractional transfer function in the form

G(s) = K ·
(
bs + 1

as + 1

)α

, (6)

where K is the static gain of the system and 0 < α < 1.
The frequency of the zero is in this case ωz = 1/b and the
frequency of the pole is ωp = 1/a, when α > 0. Following the
terminology in [14] and since in this case the transfer function

has a single fractional power zero and a single fractional power

pole, we also refer to this form as a Fractional Power Zero-

Pole (FPZP) pair.

Fig. 3. Bode diagram corresponding to a fractional power pole-zero pair
transfer function frequency response with α > 0 and b > a

The benefits of using fractional calculus in modeling are

most evident when analyzing the frequency behavior of the

resulting models. A bode diagram corresponding to (6) with

α > 0 and b > a is given in Fig. 3. It can be seen, that
by varying α a magnitude slope of 20α dB/dec and a phase

of 90α◦ can be achieved, which allows for more intricate

modeling possibilities. This additional freedom is also very

important in control design. In particular, the transfer function

in (6) corresponds to the fractional lead-lag compensator

— a generalization of the conventional controller used in

many industrial applications [18], [19]. The fractional lead-

lag compensator has the following form [20]:

C(s) = Kcx
α

(
λs + 1

xλs + 1

)α

, 0 < x < 1, (7)

where λ = b and xλ = a in (6) and Kcx
α is the controller

gain.

We now describe the algorithm, which can be used to obtain

accurate approximations in form of zero-pole distributions for

the fractional transfer function in (6).

B. Approximation Algorithm

Based on the previous discussion, several problems of the

original algorithm in [10] may be outlined:

• the initial estimate for approximation problem is not

addressed,

• the method only allows to obtain approximations for

transfer functions of order 1/n,
• resulting approximations can be of a very high order,

• the limited frequency range where the approximation is

valid.

The specific implementation of Carlson’s method could be dif-

ferent. In fact, when applied to the problem of approximating

the transfer function in (6) for a limited frequency range, the

algorithm provides very accurate results. Further, we describe

the refined algorithm, which aims to solve the aforementioned

problems.

First, we consider the initial estimate problem. Using the

iteration formula (4) results in a recursive distribution of zeros

and poles around a central frequency. In case of the fractional

power zero-pole pair transfer function, this frequency is the

geometric mean computed from the zero and pole frequencies

such that

ωm =
√
ωzωp =

1√
ab

. (8)

It relates to the initial estimate choice through the magnitude

of the fractional transfer function obtained at this frequency:

G0(ω) = |G(jωm)| =
∣∣∣∣ jbωm + 1

jaωm + 1

∣∣∣∣
α

. (9)

When selecting the initial estimate according to (9) the

resulting zero-pole distribution is then centered around ωm
ensuring that way the validity of the approximation around this

frequency. When the ratio a/b is small, only two iterations are
usually required to achieve a good result in the full frequency

range. Note, that this choice of the initial estimate is useful

for such formulas in (5) that d = 2k, k ∈ Z+.

The problem of approximating transfer functions of arbi-

trary real order using this method is much more difficult to

solve. Here, we must choose a balance between accuracy

and efficiency, since in case of order 1/n each iteration

step involves computing the nth power of a transfer function
obtained in the previous step. The order of the approximation

grows rapidly. Thus, until a different, more efficient iteration

formula is developed, we limit the resolution to 1/10. This
allows to obtain approximations of orders accurate to at least

one decimal place. However, there is no reason why a class

of arbitrary orders could not be considered as well.

The problem of using the method to obtain an approx-

imation for an arbitrary real α falls under the Egyptian

fraction decomposition class of problems, i.e. an order α is

decomposed into k simple fractions 1/mk:

α =
1

m1
+

1

m2
+ · · ·+ 1

mk
, (10)

where mk ∈ Z
+. The order decomposition algorithm is

depicted in Fig. 4 and is discussed below.
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Fig. 4. Order α decomposition algorithm

for P = 2 to M do
if α ≥ (1/P ) then

G← G ·G1/P

α← α− (1/P )
end if

end for

Fig. 5. General decomposition algorithm

The optimized decomposition is conducted using fractions

1/2 (most efficient), 1/5 and 1/10 (accuracy consideration).
The decimal fractions are then decomposed as follows:

0.1 = 1
10 , 0.2 = 1

5 , 0.3 = 1
5 + 1

10 ,

0.4 = 2 · 15 , 0.5 = 1
2 , 0.6 = 3 · 15 ,

0.7 = 1
2 + 1

5 , 0.8 = 4 · 15 , 0.9 = 4 · 15 + 1
10 .

The fractional transfer function is then approximated as

Gα(s) =
k∏

j=1

G
1
mj

base(s), (11)

where

Gbase(s) =

(
bs + 1

as + 1

)
. (12)

Note, that the initial estimate is computed for every approx-

imation of G
1/mj

base (s).
The general decomposition algorithm is given in Fig. 5. In

our case M = 10 and thus for 0 < α < 1 a decomposition
will always be found, since

10∑
k=2

(
1

k

)
> 1.

For α > 1 the general commutative property of a fractional
operator is considered, so the approximation is found such that

Gα(s) = Gn(s) ·Gγ(s), (13)

where n = α − γ denotes the integer part of α and Gγ(s)
is obtained using (11). For the case when α < 0, the
approximation is

G−α(s) =

(
1

G(s)

)α

. (14)

Finally, we address the problem of approximation order. We

propose two possibilities for order reduction:

1) Reduction of matching zeros and poles;

2) Applying a balancing reduction technique, e.g. [21].

The first method may be invoked on each step of iteration

when the order α is small to improve performance. The second
method can be applied to the resulting approximation.

We conclude this section by noting the similarities in the

approaches to realization of the fractional transfer function

in (6) found in this work and in [14], [22]. Also, a similar

implementation can be found in [12].

Therefore, it is possible to obtain the fractional differentia-

tor/integrator approximations in the desired frequency range

ω = [ωz; ωp] by selecting b = 1
ωz
, a = 1

ωp
and using the

following equation:

sα ≈ ωα
z Ĝ(s), (15)

where α > 0 corresponds to a fractional-order differentiator,
α < 0 corresponds to a fractional-order integrator and Ĝ(s)
is the approximation obtained using the above algorithm.

C. Realization in MATLAB

Hereafter, we provide a description of the function, in which

the algorithm is implemented. The function is part of the

FOMCON toolbox [23]. The calling sequence is the following:

[G,J,err]=fpzp_new(b,a,alpha,N,w,retol)

Input arguments:

• b, a, and α — parameters from (6);

• N — desired approximation order (default N = 2);
• ω — frequency range in rad/s, used for approximation

validation (default ω = [0.0001; 10000] rad/s);
• retol — matching pole-zero pair reduction tolerance

(empty by default).

Output arguments:

• G — the resulting integer-order approximation;

• J — error index, used to assess approximation quality,

computed in the following way

J =
1

nω

nω∑
i=1

∣∣∣G(jωi)− Ĝ(jωi)
∣∣∣2 ,

where nω is the number of frequencies in ω, G(jωi) is
the response of the original fractional transfer function at

frequency ωi and Ĝ(jωi) is the response of the obtained
approximation at the same frequency;

• err — order error, the fraction decomposition residue of

the fractional order α.
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Fig. 6. Implementation of a fractance element by a finite ladder circuit

IV. ANALOG AND DIGITAL REALIZATION OF

FRACTIONAL-ORDER SYSTEMS

Once a continuous-time integer-order approximation of the

implicit fractional transfer function is obtained using the

method described above, one needs to use a suitable im-

plementation technique. In this section, we investigate two

possibilities.

A. Analog Implementation

An electronic circuit that exhibits fractional behavior is

called a fractance [1], [24]. Some applications of fractance

elements are summarized in [25], [26].

One way of implementing fractances is by means of fi-

nite ladder circuits (Fig. 6). To obtain the values of the

components comprising the circuit one may consider the

following relationship between the circuit impedance Z(s)
and the impedances Zk(s) and admittances Yk+1(s) found in
the continued fraction expansion (CFE) of the corresponding

transfer function [11].

Z(s) = Z1(s) +
1

Y2(s) +
1

Z3(s) +
1

Y4(s) +
1

. . .

= Z1(s) +
1

Y2(s)+

1

Z3(s)+

1

Y4(s)+
· · · . (16)

Remark 1. The continued fraction expansion of Z(s) may
lead to negative impedances to appear in the expansion. It is

possible to realize such negative impedances using a method

described in [11], i.e. by using negative impedance converters.

A function for obtaining the continued fraction representa-

tion of a transfer function is implemented in FOMCON and

has the following calling sequence:

[c] = polycfe(b,a)

Input arguments:

• b, a — vectors of polynomial coefficients such that

G(s) =
bmsm + · · ·+ b2s

2 + b1s + b0
ansn + · · ·+ a2s2 + a1s + a0

.

Output arguments:

• c— cell array of strings containing expressions for Z1(s),
Y2(s), Z3(s), . . . in (16).

Fig. 7. Canonical form of the IIR filter

B. Digital Implementation

For the digital implementation it is possible to use a discrete

approximation of the continuous transfer function in form of

a IIR filter described by the difference equation:

y[n] =
N∑
j=0

bj · x[n− j]−
M∑
i=1

ai · y[n− i], (17)

which corresponds to a discrete transfer function

H(z) =
Y (z)

X(z)
=

M∑
j=0

bj · z−j

1 +
N∑
i=1

ai · z−i

. (18)

The IIR filter may be implemented in a suitable way, e.g.

in canonical form [27] shown in Fig. 7.

Thus, the discrete implementation comprises the following

steps:

• Find the approximation of the fractional transfer function

proposed in Section III;

• Use a suitable discretization method to arrive at the

representation in (18);

• If necessary, consider the limitations of the target hard-

ware used for digital implementation of the fractional-

order system.

V. EXAMPLES

A. Example 1

We shall obtain an approximation for the following implicit

transfer function:

G1(s) =

(
0.137s + 1

15.294s + 1

)−0.25

.

In order to do this, the following MATLAB command could

be used:

[G1,J,err] = fpzp_new(0.137, 15.294, ...
-0.25, 2)

The resulting performance index is J = 1.4887 · 10−4 and

order error is ε = 0.0 since we have −0.25 = −1/4. The
comparison of the ideal response and the response of the

obtained approximation is given in Fig. 8.
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Fig. 8. Ĝ1(s) approximation frequency response vs. G1(s) ideal frequency
response

Next, we derive an analog implementation of the resulting

transfer function. The following commands are executed in

MATLAB:

G1s = tf(balred(G1, 4));
[b,a] = tfdata(G1s, ’v’);

c = polycfe(a, b);

The order of the system is reduced to 4. The following

continued fraction expansion is obtained:

Z(s) =
1

0.30934+

1

1.9067s+

1

0.22832+

1

5.3469s+
1

0.20264+

1

14.8389s+

1

0.16035+
1

62.7838s+

1

0.093498
.

Based upon this expansion it is possible to construct a RL-

type network. We have assembled this network in LTspice IV.

The resulting schematic is given in Fig. 9.

Fig. 9. LTspice IV diagram of the RL network

The results of a frequency sweep simulation conducted

to determine the obtained network frequency characteristics

are given in Fig. 10. It can be seen, that the frequency

Fig. 10. RL network frequency characteristics

characteristics correspond to the ones obtained in MATLAB

within reasonable tolerance.

Note, that we regard this example as a proof of concept.

It may be difficult to implement some of the components of

the analog network. A heuristic method for determination of

suitable equivalent circuits may be employed. This is a subject

for further study.

B. Example 2

In this example we will implement a digital fractional lead

compensator, discussed in [20]. Consider a transfer function

that describes a position servo:

G2(s) =
1.4

s(0.7s + 1)
e−0.05s.

Based on some performance specifications (phase margin

ϕm = 80◦ and gain crossover frequency ωcg = 2.2 rad/s),
the controller was proposed such that

C1(s) =

(
2.0161s + 1

0.0015s + 1

)0.702

.

In order to obtain a rational approximation of this controller,

the following MATLAB commands can be employed:

C1 = fpzp_new(2.0161,0.0015,0.702,3);

The resulting performance index J = 0.8115 and error is

ε = 0.002. However, the order of the approximated model is
328. Applying the minreal() function results in a system
of 56th-order. One may use the balancing reduction technique

with the MATLAB function balred() of the Control System
toolbox in the following manner:

C1 = balred(C1, 5);

The performance index is now J = 0.8289, and the reduced
model of order 5 is still a very good approximation of the

fractional transfer function. The resulting control system open-

loop frequency response C1(jω)G2(jω) is shown in Fig. 11.
It can be seen, that the design specifications are correctly

fulfilled.

In [28] we have successfully realized this controller using

a prototype board working in real time on a prototyping

platform using the method described in Section IV. In this
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Fig. 11. Control system open-loop frequency response

work, however, we consider the implementation of the IIR

filter in second-order sections, that is

C(z) = b0

N∏
k=1

1 + b1kz
−1 + b2kz

−2

1− a1kz−1 + a2z−2
.

In MATLAB we issue the following set of commands to

obtain the discretization of the approximated controller and

arrive at the second-order section form:

Z1 = c2d(C1, 0.01, ...
c2dOptions( ...
’Method’,’tustin’, ...
’PrewarpFrequency’,2.2));

[z,p,k] = zpkdata(Z1,’v’);
[sos,g] = zp2sos(z,p,k);

In Fig. 12 the comparison of simulations of the control

system is shown. The set point is set to SP = 5 and it changes
on the 20th second of the simulation to 2.5. The solid line
represents the results of software simulation while the dashed

line shows the hardware-in-loop simulation, when the plant

model was implemented in Simulink and was connected to

the digital controller by means of a DAQ board. The result

obtained is comparable to that in [20], where a real plant was

used, while the controller was implemented in MATLAB.
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Fig. 12. Simulation in MATLAB vs. hardware-in-loop simulation of the
position servo controller

VI. DISCUSSION

In the following, we list the limitations of the proposed

approximation method.

• Limited resolution, currently fixed at 1/10;
• Unequal distribution of computational complexity with

different orders;

• High order of the resulting approximation, which may

not be practical in certain situations.

It is also important to consider other existing methods, that can

be applied to the same approximation problem, for example

[14], [22].

As for the realization methods, the following should be

considered:

• An analog implementation with feasible component val-

ues should be sought; a heuristic algorithm may be

employed to construct a suitable circuit that possesses

the given impedance Z(s).
• Further study of efficient digital implementation should

be conducted. For example, we have had some trouble

due to the limited sample resolution of the used hardware.

VII. CONCLUSIONS

In this paper, we presented a method, derived from the

Newton root-finding method, for approximating a first-order

implicit fractional-order transfer function. We have shown,

that although the method has limitations, it can be applied

to solving a class of modeling and control problems. Further

research should be devoted to derivation of an alternative

iteration formula so that the expensive operations of taking

an nth power for fractional orders 1/n could be avoided, thus
enhancing the resolution of the approximated order. It is also

natural to expect, that this method, given correct treatment,

could be applied to approximation of more complex systems.

We have also presented a general technique to derive an nth
order Householder method fit for solving the same task which

could be useful in some cases.

Finally, we have illustrated the use of the second-order

method in analog and digital implementations of fractional-

order systems and controllers.
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