PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analog Circuits Sizing Using the Fixed Point Iteration Algorithm with Transistor Compact Models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an algorithm, based on the fixed point iteration, to solve for sizes and biases using transistor compact models such as BSIM3v3, BSIM4, PSP and EKV. The proposed algorithm simplifies the implementation of sizing and biasing operators. Sizing and biasing operators were originally proposed in the hierarchical sizing and biasing methodology [1]. They allow to compute transistors sizes and biases based on transistor compact models, while respecting the designer's hypotheses. Computed sizes and biases are accurate, and guarantee the correct electrical behavior as expected by the designer. Sizing and biasing operators interface with a Spice-like simulator, allowing possible use of all available compact models for circuit sizing and biasing over different technologies. A bipartite graph , that contains sizing and biasing operators, is associated to the design view of a circuit, it is the design procedure for the given circuit. To illustrate the effectiveness of the proposed fixed point algorithm, a folded cascode OTA is efficiently sized with a 130nm process, then migrated to a 65nm technology. Both sizing and migration are performed in a few milliseconds.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Ramy Iskander, Marie-Minerve Louerat, and Andreas Kaiser. ”Hierarchical Sizing and Biasing of Analog Firm Intellectual Properties”. Integration, the VLSI Journal , 2012. in press, DOI 10.1016/j.vlsi.2012.01.001.
  • [2] R. Harjani, R. A. Rutenbar, and L. R. Carley. ”OASYS: A Framework for Analog Circuit Synthesis”. IEEE Transactions on Computer-Aided Design of Integrated Circuits , 8(12):1247–1266, December 1989.
  • [3] M. G. R. DeGrauwe, E. Dijkstra O. Nys, J. Rijmenants, S. Bitz, B. L. A. G. Goffart, E. A. Vittoz, S. Cserveny, C. Meixenberger, G. van der Stappen, and H. J. Oguey. ”IDAC: An Interactive Design Tool for Analog CMOS Circuits”. IEEE J. of Solid-State Circuits , SC-22(6):1106–1116, December 1987.
  • [4] Han Young Koh, Carlo H. Sequin, and Paul R. Gray. ”OPASYN: A Compiler for CMOS Operational Amplifiers”. IEEE Transactions on Computer-Aided Design of Integrated Circuits , 9(2):113–125, February 1990.
  • [5] W. Nye, D.C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits. ”DE- LIGHT.SPICE: An Optimization-Based System for Design of Integrated Circuits”. IEEE Transactions on Computer-Aided Design of Integrated Circuits , 7(4):501–518, April 1988.
  • [6] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. ”Synthesis of High- Performance Analog Circuits in ASTRX/OBLX”. IEEE Transactions on Computer-Aided Design of Integrated Circuits , 15(3):273–294, March 1996.
  • [7] G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. Gielen, W. Sansen, P. Veselinovic, and D. Leenaerts. ”AMGIE-A synthesis environment for CMOS analog integrated circuits”. IEEE Trans. on Circuits Syst. , 20(9):1037–1058, September 2001.
  • [8] M. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Carley. ”MAEL- STROM: Efficient Simulation-based Synthesis for Custom Analog Cells”. Proc. Design Automation Conf. , pages 945–950, June 1999.
  • [9] R. Phelps, M. Krasnicki, R. A. Rutenbar, L. R. Carley, and J. R. Hellums. ”ANACONDA: Robust Synthesis of Analog Circuits Via Stochastic Pattern Search”. IEEE Transactions on Computer-Aided Design of Integrated Circuits , pages 567–570, 2000.
  • [10] Jacky Porte. ”COMDIAC: Compilateur de Dispositifs Actifs” . Ecole Nationale Superieure des Telecommunications, Paris, September 1997.
  • [11] D. Stefanovic, M. Kayal, and M. Pastre. ”PAD: A new interactive Knowledge-Based Analog Design Approach”. pages 291–299, March 2005.
  • [12] Danica Stefanovic and Maher Kayal. ”Structured Analog CMOS Design” . Kluwer Academic Publishers, 2009.
  • [13] D. M. Binkley, C. E. Hopper, S. D. Tucker, B. C. Moss, J. M. Rochelle, and D. P. Foty. ”A CAD Methodology for Optimizing Transistor Current and Sizing in Analog CMOS Design”. IEEE Transactions on Computer- Aided Design of Integrated Circuits , 22(2):225–237, February 2003.
  • [14] F. Javid, R. Iskander, and M-M. Lou ? erat. ”Simulation-Based Hierar- chical Sizing and Biasing of Analog Firm IPs”. IEEE International Be- havioral Modeling and Simulation Conference , pages 43–48, September 2009.
  • [15] L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin. ”Analog Circuit Design in Nanoscale CMOS Technologies”. Proceedings of the IEEE , Vol. 97(No. 10):1687–1714, October 2009.
  • [16] William Liu. ”MOSFET Models for SPICE Simulation Including BSIM3v3 and BSIM4” . Wiley-Interscience, 2001.
  • [17] NXP, MOS Model PSP level 103, 2011.
  • [18] Christian Enz, Francois Krummenacher, and Eric Vittoz. ”An Analytical MOS Transistor Model Valid in All Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications”. Analog Integrated Circuits and Signal Processing Journal , Vol. 8(No. 1):83–114, July 1995.
  • [19] D. Libes. EXPECT. 2010.
  • [20] F. Javid, R. Iskander, M-M. Louerat, and D. Dupuis. ”Analog Circuits Sizing Using Bipartite Graphs”. IEEE Midwest Symposium on Circuits and Systems , August 2011.
  • [21] P. Henrici. ”Elements of Numerical Analysis” . Wiley, John Sons, 1964.
  • [22] J. Legras. ”Methodes et Techniques de l’Analyse Numerique” . Dunod, 1971.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0002-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.