PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Granulacja bębnowa surowców drobnoziarnistych o różnych skladach ziarnowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Drum granulation of fine-grained materials with different grain compositions
Języki publikacji
PL
Abstrakty
PL
W procesie mokrej granulacji realizowanej w obrotowych bębnach zasadniczy wpływ na przebieg procesu i właściwości wytworzonego produktu mają zjawiska i przemiany zachodzące na granicy faz mediów uczestniczących w ruchu przesypowym nawilżonego złoża materiału. Oddziaływania między poszczególnymi ziarnami materiału lub pewnymi ich zbiorami są zależne od właściwości poszczególnych mediów, a w szczególności od składu ziarnowego granulowanego surowca. W niniejszej pracy, w oparciu o wyniki badań własnych oraz przedmiotową literaturę, przedstawiono ocenę wpływu warunków prowadzenia procesu granulacji na właściwości cząstek produktu wytworzonego z materiałów drobnoziarnistych o różnych składach ziarnowych. W pierwszej części pracy scharakteryzowano podstawowe właściwości materiałów ziarnistych, a także sposoby ich określania. W kolejnym rozdziale przedstawiono stan wiedzy w zakresie mechanizmów powstawania i wzrostu aglomeratów. Omówiono kinetykę formowania zarodków, zagadnienia dotyczące wzajemnych relacji ciecz wiążąca-materiał drobnoziarnisty, a także przedstawiono modele wzrostu dotyczące zarówno etapu nukleacji, jak i dalszego wzrostu granul na drodze koalescencji, ścierania i nawarstwiania. Rozdział 4 zawiera opis modelowych materiałów drobnoziarnistych stosowanych podczas badań doświadczalnych, sposób ich przygotowania, a także podstawowe właściwości fizyczne. Przedstawiono tu również opis użytej aparatury badawczej oraz dobór warunków nawilżania złoża w procesie granulacji. W rozdziale 5 przedstawiono wyniki badań kinetyki wzrostu aglomeratów w procesie granulacji bębnowej dla różnych materiałów drobnoziarnistych i różnych warunków procesowych. Omówiono wpływ warunków nawilżania złoża (wilgotności wsadu, intensywności nawilżania, wielkości kropel cieczy wiążącej) na przebieg procesu i skład granulometryczny przetwarzanego wsadu. Zaproponowano mapę zakresów granulacji wyróżniającą trzy różne obszary przebiegu procesu w zależności od wilgotności wsadu i rozmiarów kropel cieczy wiążącej. Rozdział 6 jest poświęcony ocenie porowatości aglomeratów wytworzonych w procesie mokrej granulacji materiałów o różnym uziarnieniu, przy zmiennych warunkach nawilżania wsadu. Przedstawiono zależności opisujące szybkość zagęszczania ziaren w granulach w trakcie procesu w funkcji wilgotności wsadu i średniego rozmiaru ziaren surowca. Określono nakłady energii koniecznej na jednostkowy przyrost zagęszczenia ziaren w granulach wytworzonych z materiałów o różnym uziarnieniu, w zależności od wilgotności wsadu. W rozdziale 7 przedstawiono wyniki badań gęstości nasypowej granulatu wytworzonego z różnych surowców, przy zmiennych warunkach nawilżania. Przedstawiono analizę zmian gęstości nasypowej granulowanego złoża w trakcie procesu uwzględniającą zmiany składu ziarnowego wsadu oraz zagęszczanie ziaren w granulach. Rozdział 8 prezentuje badania wytrzymałości mechanicznej granul. Przedstawiono metody badań wytrzymałościowych, a także formy niszczenia granul o różnych właściwościach fizycznych. W części doświadczalnej przedstawiono wyniki badań wytrzymałości na ściskanie pojedynczych granul w stanie wysuszonym, wytworzonych w procesie mokrej granulacji bębnowej, przy różnych parametrach procesowych. Dokonano analizy wpływu składu ziarnowego granulowanego surowca oraz warunków jego nawilżania na wartości sił i naprężeń ściskających, powodujących niszczenie granul o określonych wymiarach. Przedstawiono również wyniki oceny wytrzymałości granulatu przy wykorzystaniu testu na ścieranie. W rozdziale 9 przedstawiono zagadnienia związane z dynamiką wsadu przesypującego się w obrotowym bębnie. Na podstawie chwilowych wartości momentu obrotowego rejestrowanego na wale granulatora określano zapotrzebowanie mocy w poszczególnych fazach procesu granulacji, a następnie jednostkowe zużycie energii na przetworzenie nawilżonego złoża w granulat. Określono wpływ średniego wymiaru ziaren surowca i wilgotności wsadu na nakłady energetyczne odniesione do jednostkowego przyrostu średniego wymiaru granul.
EN
In the wet granulation process performed in the rotary drum, phenomena and the changes occurring at the interface of media involved in the tumbling of the wetted bed material have major impact on the process course and the properties of formed product. The interactions between individual grains of the material or some their sets depend on the characteristics of the media, in particular, on the grain composition of granulated material. This paper provides the assessment of the impact of granulation process conditions on the properties of grain particles of product obtained from finegrained materials with different grain compositions, prepared on the basis of the results of own research and data from subject literature. In the first part of this work the basic properties of granulated materials and the methods for their determination are characterized. The next chapter presents the state of knowledge concerning the mechanisms of formation and agglomerates growth. The kinetics of nuclei formation and issues concerning the relationship between binding liquid and fine material are discussed here. Moreover, growth models applying to the nucleation stage and to the further growth of granules via their coalescence, abrasion and layering are presented in this part. Chapter 4 contains the description of model fine-grained materials used in experimental studies, methods of their preparation and also their basic physical properties. It also describes the equipment used in the study and presents the choice of bed wetting conditions during the granulation process. Chapter 5 presents the results of the study of agglomerates growth kinetics in the process of drum granulation of various fine-grained materials in different process conditions. The influence of bed wetting conditions (batch moisture content, wetting intensity, binding liquid droplet size) on both the process course and the granulometric composition of the processed batch is described. The map of granulation regions which distinguishes three different areas of the process course depending on the batch moisture and binding liquid droplets size has been suggested. Chapter 6 is devoted to the assessment of the porosity of the agglomerates formed in the process of wet granulation of materials with different grain sizes and during which different conditions of batch wetting are used. It presents the relations describing the rate of grains concentrations during granulation as a function of both batch moisture content and the mean material grains size. The energy input required for the unit increase in the grains density of granules formed from the material with different grain sizes, depending on batch moisture is specified here. Chapter 7 presents the results of the study of bulk density of granulate obtained from different raw materials with the use of different wetting conditions. The analysis of changes in bulk density of granulated deposits during the process, which takes into consideration the changes in the grain composition of the batch as well as grains concentration in granules, is presented here. Chapter 8 presents the study of granules mechanical strength. The methods of strength tests, as well as the means of destruction of granules with different physical properties are described. The experimental part presents the results of compressive strength test for individual granules, in a dried state, which were formed in the process of wet drum granulation with different process parameters. The analysis of the impact of grain composition of granulated material and the conditions of its wetting on the forces and compressive stress which lead to the destruction of the granules with definite dimensions were conducted. The paper also presents the results of granule strength analysis performed with the use of the abrasion test. Chapter 9 presents the issues related to the dynamics of batch tumbling in the rotary drum. On the basis of the instantaneous torque values registered on the granulator shaft, the power demand in the particular phases of the granulation process, and the unit energy consumption required for the processing of wetted batch into granules have been determined. The influence of mean grain size of raw material and batch moisture content on the energy input relating to a unit increase in mean size of granules have been assessed.
Rocznik
Tom
Strony
1--206
Opis fizyczny
Bibliogr. 240 poz.
Twórcy
autor
  • Wydział Inżynierii Procesowej i Ochrony Środowiska Politechniki Łódzkiej
Bibliografia
  • [1.1] J. Litster and B. Ennis, The Science and Engineeting of Granulation Processes, Kluwer Academic Publishers, 2004.
  • [2.1] H. Błasiński, B. Młodziński, Aparatura Przemysłu Chemicznego, WNT, Warszawa 1971.
  • [2.2] J. Boss, Mieszanie materiałów ziarnistych, PWN, Warszawa 1987.
  • [2.3] A. Obraniak, T. Gluba, A Model of tumbling agglomeration in rotary drum, The 5th International Conference for Conveying and Handlings of Particulate Solids (27-31.08), Sorrento, Italy, 2006.
  • [2.4] W. Pietsch, Agglomeration Processes, VCH, 2001.
  • [2.5] W.W. Kafarow, Metody cybernetyczne w chemii i technologii chemicznej, WNT, Warszawa 1979.
  • [2.6] S.L. Achnazarowa, W.W. Kafarow, Optymalizacja badań w chemii i technologii chemicznej, WNT, Warszawa 1982.
  • [2.7] R. Andrzejewski, W. Gutowski, Fizyczne własności pyłów, Wyd. Śląsk, Katowice 1968.
  • [3.1] P.C. Kapur, D.W. Fuerstenau, Size distributions and kinetic relationships in the nuclei region of wet pelletization, I & EC Proc. Des. and Dev. 5, 1 pp. 5-10 (1966).
  • [3.2] K.V.S. Sastry, D.W. Fuerstenau, Mechanisms of agglomerate growth in green pelletization, Powder Technology, 7, pp. 97-106 (1973).
  • [3.3] B.J. Ennis, J.D. Litster, Particle size enlargement, in: R. Perry, D. Green (Eds.), Perry's Chemical Engineers' Handbook, 7th edn., McGraw-Hill, New York, 1997, pp. 20.56-20.89.
  • [3.4] P.R. Mort, G. Tardos, Scale-up of agglomeration processes using transformations, Kona 17 (1999) 64-75.
  • [3.5] J.D. Litster, B.J. Ennis, L. Lian, The Science and Engineering of Granulation Processes, Kluwer Academic Publishers, Dordrecht; Boston, Mass, 2004.
  • [3.6] G.I. Tardos, M. Irfan-Khan, P.R. Mort, Critical Parameters and limiting conditions in binder granulation of fine powders, Powder Technol. 94 (1997) 245-258.
  • [3.7] S.H. Schaafsma, N.W.F. Kossen, M.T. Mos, L. Blauw, A.C.Hoffman, Effects and control of humidity and particle mixing in fluid-bed granulation, AIChE J. 45 (1999) 1202-1210.
  • [3.8] S.M. Iveson, J.D. Litster, K. Hapgood, B.J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review, Powder Technology 117 (2001) 3-39.
  • [3.9] M.E. Aulton, M. Banks, Influence of the hydrophobicity of the powder mix on fluidised bed granulation.International Conference on Powder Technology in Pharmacy, Basel, Switzerland, Powder Advisory Centre, 1979.
  • [3.10] K.T. Jaiyeoba, M.S. Spring. The granulation of ternary mixtures: the effect of the wettability of the powders, J. Pharm. Pharmacol. 32 (1980) 386-388.
  • [3.11] T. Gluba, A. Heim, B. Kochanski, Application of the theory of moments in the estimation of powder granulation of different wettabilities, Powder Handl. Process. 2 (1990) 323-326.
  • [3.12] P. York, R.C. Rowe, Monitoring granulation size enlargement processes using mixer torque rheometry, First International Particle Technology Forum, Denver, USA, 1994.
  • [3.13] R.C. Rowe, Binder-substrate interactions in granulation: a theoretical approach based on surface free energy and polarity, Int. J. Pharm. 52 (1989) 149-154.
  • [3.14] I. Krycer, D.G. Pope, An evaluation of tablet binding agents: Part I. Solution binders, Powder Technol. 34 (1983) 39-51.
  • [3.15] L. Zajic, G. Buckton, The use of surface energy values to predict optimum binder selection for granulations, Int. J. Pharm. 59 (1990) 155-164.
  • [3.16] T. Schaefer, C. Mathiesen, Melt pelletization in a high shear mixer: IX. Effects of binder particle size, Int. J. Pharm. 139 (1996) 139-148.
  • [3.17] A.C. Scott, M.J. Hounslow, T. Instone, Direct evidence of heterogeneity during high-shear granulation, Powder Technol. 113 (2000) 205-213.
  • [3.18] M.J. Hounslow, M. Oullion, G.K. Reynolds, Kinetic models for granule nucleation by the immersion mechanism, Powder Technol. 189 (2009) 177-189.
  • [3.19] M. Denesuk, G.L. Smith, B.J.J. Zelinski, N.J. Kreidl, D.R. Uhlmann, Capillary penetration of liquid droplets into porous materials, J. Colloid Interface Sci. 158 (1993) 114-120.
  • [3.20] S.H. Schaafsma, P. Vonk, P. Segers, N.W.F. Kossen, Description of agglomerate growth, Powder Technol. 97 (1998) 183-190.
  • [3.21] T. Abberger, A. Seo, T. Schaefer, The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration, Int, J. Pharm., 249 (2002) 185-197.
  • [3.22] P. Holm, O. Jungersen, T. Scharfer, H.G. Kristensen, Granulation in high speed mixers: Part 1. Effects of process variables during kneading, Pharm. Ind. 45 (1983) 806-811.
  • [3.23] P. Holm, O. Jungersen, T. Schaefer, H.G. Kristensen, Granulation in high speed mixers: Part 2. Effects of process variables during kneading, Pharm. Ind. 46 (1984) 97-101.
  • [3.24] P.C. Knight, T. Instone, J.M.K. Pearson, M.J. Hounslow, An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration, Powder Technol. 97 (1998) 246-257.
  • [3.25] S.H. Schaafsma, P. Vonk, N.W.F. Kossen, A new liquid nozzle for the fluid bed agglomeration process, World Congress on Particle Technology, Brighton, UK, IchemE, 1998.
  • [3.26] T. Schaefer, O. Worts, Control of fluidised bed granulation II: estimation of droplet size of atomised binder solutions, Arch. Pharam. Chem. 5 (1977) 178-193.
  • [3.27] T. Schaefer, O. W0rts, Control of fluidised bed granulation: IV. Effects of binder solution and atomization on granule size and size distribution, Arch. Pharm. Chem. 6 (1978) 14-25.
  • [3.28] B. Waldie, D. Wilkinson, L. Zachra, Kinetics and mechanism of growth in batch and continuous fluidised bed granulation, Chem. Eng. Sci. 42 (1987) 653-665.
  • [3.29] B. Waldie, Growth mechanism and the dependence of granule size on drop size in fluidised bed granulation, Chem. Eng. Sci. 46 (1991) 2781-2785.
  • [3.30] T. Schaefer, C. Mathiesen, Melt pelletization in a high shear mixer: IX. Effects of binder particle size, Int. J. Pharm. 139 (1996) 139-148.
  • [3.31] A.S. Rankell, M.W. Scott, H.A. Lieberman, F.S. Chow, J.V. Battista, Continuous production of tablet granulations in fluidized bed II. Operation and performance of equipment, J. Pharm. Sci. 53 (1964) 320-324.
  • [3.32] M.J. Crooks, H.W. Schade, Fluidized bed granulation of a micro-dose pharmaceutical powder, Powder Technol. 19 (1978) 103-208.
  • [3.33] W.L. Davies, W.T. Gloor Jr., Batch production of pharmaceutical granulations in a fluidized bed: I. Effects of process variables on physical properties of final granulation, J. Pharm. Sci. 60 (1971) 1869-1874.
  • [3.34] S. Watano, H. Takashima, K. Miyanami, Scale-up of agitation fluidized bed granulation: V. Effect of moisture content on scale-up characteristics, Chem. Pharm. Bull. 45 (1997) 710-714.
  • [3.35] J.D. Litster, K.P. Hapgood, J.N. Michaels, A. Sims, M. Roberts, S.K. Kameneni, T. Hsu, Liquid distribution in wet granulation: dimensionless spray flux. Powder Technol. 114 (2001) 29-32.
  • [3.36] P.A.L. Wauters, R.B. Jakobsen, J.D. Litster, G.M.H. Meesters, B. Scarlett, Liquid distribution as a means to describing the granule growth mechanism. Powder Technology 123 (2002) 166-177.
  • [3.37] J.D. Litster, S.M. Iveson, K.P. Hapgood, Predicting and controlling granule properties in granulation processes.World Congress on Particle Technology 3, 7-9 July, Brighton, UK, IChemE., Paper #92, 1998.
  • [3.38] K.P. Hapgood, J.D. Litster, R. Smith, Nucleation Regime Map for Liquid Bound Granules, AIChE Journal, 49 No. 2, 2003.
  • [3.39] N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics, I&EC Process Des. Dev. 14 (1975) 286-289.
  • [3.40] B.J. Ennis, G.I. Tardos, R. Pfeffer, A microlevel-based characterization of granulation phenomena. Powder Technol. 65 (1991) 257-272.
  • [3.41] J.L. Moseley, TJ. O'Brien, A model for agglomeration in a fluidized bed, Chem. Eng. Sci. 48 (1993) 3043-3050.
  • [3.42] S.J.R. Simons, J.P.K. Seville, M.J. Adams, Mechanisms of ag-glomeration, 6th Int. Symp. Agglomeration, Nov 15—17, Nagoya, Japan, 1993, pp. 117-122.
  • [3.43] S.J.R. Simons, J.P.K. Seville, M.J. Adams, An analysis of the rupture energy of pendular liquid bridges, Chem. Eng. Sci. 49 (1994) 2331-2339.
  • [3.44] M.J. Adams, C. Thornton. G. Lian, Agglomerate Coalescence, First International Particle Technology Forum, August 17-19, Denver USA vol. 3 (1994) pp. 220-224.
  • [3.45] G. Lian, C. Thornton. M.J. Adams, Discrete particle simulation of agglomerate impact coalescence, Chem. Eng. Sci. 53 (1998) 3381-3391.
  • [3.46] J.P.K. Seville, H. Silomon-Pflug, P.C. Knight, Modelling of sintering in high temperature gas fluidisation, Powder Technol. 97 (1998) 160-169.
  • [3.47] C. Thornton, Z. Ming, A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres, Powder Technol. 99 (1998) 154-162.
  • [3.48] L.X. Liu, S.M. Iveson, J.D. Litster, B.J. Ennis, Coalescence of deformable granules in wet granulation processes, AIChE J. 46 (2000) 529-539.
  • [3.49] S.M. Iveson, Granule coalescence modelling: including the effects of bond strengthening and distributed impact separation forces, Chem. Eng. Sci. 56 (2001) 2175-2220.
  • [3.50] N. Ouchiyama, T. Tanaka, The probability of coalescence in granulation kinetics, I&EC Process Des. Dev. 14 (1975) 286-289.
  • [3.51] N. Ouchiyama, T. Tanaka, Physical requisite to appropriate granule growth rate, Ind. Eng. Chem. Process Des. Dev. 21 (1982) 35-37.
  • [3.52] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 2. Effects of particle size distribution, Powder Technol. 44 (1985) 239-247.
  • [3.53] L.X. Liu, S.M. Iveson, J.D. Litster, B.J. Ennis, Coalescence of deformable granules in wet granulation processes, AIChE J. 46 (2000) 529-539.
  • [3.54] M. Irfan-Khan, G.I. Tardos, Stability of wet agglomerates in granular shear flows, J. Fluid Mech. 347 (1997) 347-368.
  • [3.55] F. Hoornaert, P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis, B. Scarlett, Agglomeration behaviour of powders in a lodige mixer granulator. Powder Technol. 96 (1998) 116-128.
  • [3.56] S.M. Iveson, J.D. Litster, Growth regime map for liquid-bound granules, AIChE J. 44 (1998) 1510-1518.
  • [3.57] P.C. Kapur, D.W. Fuerstenau, Kinetics of green pelletization, Trans. AIME 229 (1964) 348-355.
  • [3.58] P.C. Kapur, Balling and granulation, Adv. Chem. Eng. 10 (1978) 55-123.
  • [3.59] D.M. Newitt, J.M. Conway-Jones, A contribution to the theory and practice of granulation, Trans. I. Chem. Eng. 36 (1958) 422-441.
  • [3.60] C.E. Capes, P.V. Danckwerts, Granule formation by the agglomeration of damp powders: Part 1. The mechanism of granule growth, Trans. I. Chem. Eng. 43 (1965) 116-124.
  • [3.61] K.V.S. Sastry, Similarity size distribution of agglomerates during their growth by coalescence in granulation or green pelletization, Int. J, Miner. Process. 2 (1975) 187-203.
  • [3.62] P.C. Kapur, D.W. Fuerstenau, Kinetics of green pelletization, Trans. AIME 229 (1964) 348-355.
  • [3.63] P.B. Linkson, J.R. Glastonbury, G.J. Duffy, The mechanism of granule growth in wet palletisation, Trans. Inst. Chem. Eng. 51 (1973) 251-259.
  • [3.64] P.B. Linkson, J.R. Glastonbury, G.J. Duffy, The mechanism of granule growth in wet palletisation, Trans. Inst. Chem. Eng. 51 (1973) 251-259.
  • [3.65] F. Hoornaert, G.M.H. Meesters, S.E. Pratsinis, B. Scarlett, Powder agglomeration in a lodige granulator, Int. Forum Particle Tech., Denver, 1994.
  • [3.66] K.V.S. Sastry, S.C. Panigraphy, D.W. Fuerstenau, Effect of wet grinding and dry grinding on the batch balling behaviour of particulate materials, Trans. Soc. Mining Eng. 262 (1977) 325-330.
  • [3.67] S.M. Iveson, P.A.L. Wauters, S. Forrest, J.D. Litster, G.M.H. Meesters, B. Scarlett, Growth regime map for liquid-bound granules: further development and experimental validation. Powder Technology 117 (2001) 83-97.
  • [3.68] P.J. Sherington, The granulation of sand as an aid to understanding fertilizer granulation, Chem. Eng. (1968) 201-215, July/August.
  • [3.69] K.V.S. Sastry, D.W. Fuerstenau. Kinetic and process analysis of the agglomeration of particulate materials by green pelletization, in: Sastry (Ed.), Agglomeration '77, AIME, New York, 1977, 381.
  • [3.70] P.C. Knight, A. Johansen, H.G. Kristensen, T. Schaefer, J.P.K. Seville, An investigation of the effects on agglomeration of changing the speed of a mechanical mixer, Powder Technol. 110 (2000) 204-209.
  • [3.71] S. Watano, Y. Sato, K. Miyanami, T. Murakami, Scale up of agitation fluidized bed granulation. Parts I-IV, Chem. Pharm. Bull. 43(1995) 1212-1230.
  • [3.72] T. Schaefer, P. Holm, H.G. Kristensen, Wet granulation in a laboratory scale high shear mixer, Pharm Ind. 52 (1990) 1147-1153.
  • [3.73] P. Vonk, G. CPF, J.S. Ramaker, H. Vromans, N.W.F. Kossen, Growth mechanisms of high-shear pelletisation, Int. J. Pharm. 157 (1997) 93-102.
  • [3.74] J.S. Ramaker, M.A. Jelgersma. P. Vonk, N.W.F. Kossen, Scale-down of a high shear pelletisation process: flow profile and growth kinetics. Int. J. Pharm. 166 (1998) 89-97.
  • [3.75] J.M.K. Pearson, M.J. Hounslow. T. Instone, P.C. Knight, Granulation kinetics: the confounding of particle size and age, World Congress on Particle Technology, Brighton, UK, IChemE, paper #86, 1998.
  • [3.76] S.T. Kenningley, P.C. Knight, A.D. Marson, An investigation into the effects of binder viscosity on agglomeration behaviour, Powder Technol. 91 (1997) 95-103.
  • [5.1] T. Gluba, A. Heim, Wzrost aglomeratów w procesie mokrej granulacji bębnowej surowca mineralnego o różnym składzie ziarnowym, Inż. Chem. i Proc., 21 (2000) 329-344.
  • [5.2] T. Gluba, Drum granulation conditions for raw material with different particle size distributions, Proceedings of the 3rd Israeli Conference for conveying and handling of particulate solids (Israel, Grand Nirvana 29.05-1.06), 1 (2000) 2.8-2.13.
  • [5.3] T. Gluba, A. Heim, A. Obraniak, Investigation of the drum granulation conditions for mineral raw material of different grain size compositions, Physicochemical Problems of Mineral Procesing, 35 (2001) 103-112.
  • [5.4] D.M. Newitt, J.M. Conway-Jones, A contribution to the theory and practice of granulation, Trans. Instn. Chem. Eng. 36 (1958) 422-442.
  • [5.5] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 2. Effects of particle size distribution, Powder Technol. 44 (1985) 239-247.
  • [5.6] T. Schaefer, P. Holm, H.G. Kristensen, Melt granulation in a laboratory scale high shear mixer, Drug Dev. Ind. Pharm. 16 (1990) 1249-1277.
  • [5.7] P.C. Kapur, D.W. Fuerstenau, Kinetics of green pelletization, Trans. AIME 229 (1964) 348-355.
  • [5.8] P.C. Knight, An investigation of the kinetics of granulation using a high shear mixer, Powder Technol. 77 (1993) 159-169.
  • [5.9] F. Hoornaert, P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis, B. Scarlett, Agglomeration behaviour of powders in a Lödige mixer granulator. Powder Technol. 96 (1998) 116-128.
  • [5.10] M. Ritala, P. Holm, T. Schaefer, H.G. Kristensen, Influence of liquid bonding strength on power consumption during granulation in a high shear mixer, Drug. Dev. Ind. Pharm. 14 (1988) 1041-1060.
  • [5.11] P.C. Kapur and D.W. Fuerstenau,. A coalescence model for granulation, I&EC Process Design and Development, 8 (1969) 56-62.
  • [5.12] K.V.S. Sastry and D.W. Fuerstenau, Mechanisms of Agglomerate Growth in Green Pelletization, Powder Technology, 7 (1973) 97-105.
  • [5.13] T. Gluba, A. Heim B. Kochanski, Application of the theory of moments in the estimation of powder granulation of different wettabilities, Powder handling & processing, 2 (1990) 323-326.
  • [5.14] E. Horvath, K. Pataki. and Z. Ormos, Study of rolling-bed granulation II, Hung. J. Ind. Chem., 15 (1987) 121-131.
  • [5.15] E. Horvath, K. Pataki. and Z. Ormos, Study of rolling-bed granulation III, Hung. J. Ind. Chem., 15(1987) 133-140.
  • [5.16] E. Horvath, K. Pataki. and Z. Ormos, Study of rolling-bed granulation VII, Hung. J. Ind. Chem., 17(1989) 121-130.
  • [5.17] S.M. Iveson. and J.D. Litster,. Fundamental studies of granule consolidation. Part 2: Quantifying the effects of particle and binder properties, Powder Technol., 99 (1998) 243-250.
  • [5.18] T. Gluba and A. Obraniak, Drum granulation of mineral raw materials with different particle size distributions, Proceedings of the XXI International Mineral Processing Congress, Italy 2000.
  • [5.19] T. Gluba., Conditions of Bed Wetting during Granulation of Raw Materials with Different Particle Size Distributions , 13th Interntional Congress CHISA 1998.
  • [5.20] T. Gluba; The effect of wetting liquid droplet size on the growth of agglomerates during wet drum granulation; 7 th International Symposium on Agglomeration (29-31.05); Albi, Francja; 2001.
  • [5.21] T. Gluba, The effect of wetting liquid droplet size on the growth of agglomerates during wet drum granulation, Powder Technol. 130 (2003), 219-224.
  • [5.22] T. Gluba; The effect of interfacial surface development on the properties of wet drum granulation product, 4 th European Congress of Chemical Engineering (21-25.09); Granada, Spain; 2003.
  • [5.23] T. Gluba; Wpływ rozdrobnienia surowca i wielkości kropel cieczy zwilżającej na właściwości produktu mokrej granulacji bębnowej"; Inż. Apar. Chem.; 43(35); 3s., s. 43-44; 2004.
  • [5.24] S.H. Schaafsma, P. Vonk, P. Segers, N.W.F. Kossen, Description of agglomerate growth. Powder Technology 97 (1998) 183-190.
  • [5.25] B. Waldie, Growth mechanism and the dependence of agglomerate size on drop size in fluidized-bed granulation, Chem. Eng. Sci. 46 (1991) 2781
  • [5.26] T. Schaefer, O. Worts, Control of fluidised bed granulation II: Estimation of droplet size of atomised binder solutions, Arch. Pharam. Chem. 5 (1977) 178-193.
  • [5.27] W.J. Wildeboer, J.D. Litster, I.T. Cameron, Modelling nucleation in wet granulation, Chem. Eng. Sci., 60 (2005) 3751-3761.
  • [5.28] T. Schaefer, O. Worts, Control of fluidised bed granulation IV. Effects of binder solution and atomization on granule size and size distribution, Arch. Pharm. Chem. Sci. Ed. 6 (1978) 14-25.
  • [5.29] S. Watano, A. Yamamoto, K. Miyanami, Effects of operational variables on the properties of granules prepared by moisture control method in tumbling fluidized bed granulation, Chem. Pharm. Bull. 42 (1994) 133-137.
  • [5.30] S.H. Schaafsma, P. Vonk, N.W.F. Kossen, Fluid`bed agglomeration with a narrow droplet size distribution, Int. J. Pharm. 193 (2000) 175-187.
  • [5.31] A. Seo, P. Holm, T. Schaefer, Effects of droplet size and type of binder on agglomerate growth mechanisms by melt agglomeration in fluidised bed, European Journal of Pharmaceutical Sciences, 16 (2002) 95-105.
  • [5.32] T. Gluba, The effect of wetting conditions on the nucleation and growth of agglomerates during drum granulation, Proceedings of 7th World Congress of Chemical Engineering, Glasgow, 2005 CD-ROM, s.1-10.
  • [5.33] T. Gluba, The effect of wetting conditions on wet drum granulation kinetics, Proceedings of the 5th World Congress on Particle Technology (23-27.04), Orlando, Florida, USA, 2006.
  • [5.34] C.E. Capes, P.V. Danckwerts, Granule formation by the agglomeration of damp powders: Part 1. The mechanism of granule growth, Trans. I. Chem. Eng. 43 (1965) 116-124.
  • [5.35] H. Rumpf, in: W.A. Knepper Ed. , The Strength of Granules and Agglomerates, AIME, Agglomeration, Interscience, New York, 1962, pp. 379-418.
  • [5.36] M. Ritala, O. Jungersen, P. Holm, T. Schaefer, H.G. Kristensen. A comparison between binders in the wet phase of granulation in a high shear mixer, Drug Dev. Ind. Pharm. 12 (1986) 1685-1700.
  • [5.37] F. Hoornaert, P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis, B. Scarlett, Agglomeration behaviour of powders in a lodige mixer granulator. Powder Technol. 96 (1998) 116-128.
  • [5.38] T. Schaefer, C. Mathiesen, Melt pelletization in a high shear mixer: VIII. Effects of binder viscosity, Int. J. Pharm. 139 (1996) 125-138.
  • [5.39] S.T. Kenningley, P.C. Knight, A.D. Marson, An investigation into the effects of binder viscosity on agglomeration behaviour, Powder Technol. 91 (1997) 95-103.
  • [5.40] T. Schaefer, C. Mathiesen, Melt pelletization in a high shear mixer: VIII. Effects of binder viscosity, Int. J. Pharm. 139 (1996) 125-138.
  • [5.41] B.J. Ennis, Agglomeration and size enlargement, session summary paper. Powder Technol. 88 (1996) 203-225.
  • [5.42] S.J.R. Simons, J.P.K. Seville, M.J. Adams, Mechanisms of agglomeration, 6th Int. Symp. Agglomeration, Nov 15-17, Nagoya, Japan, 1993, pp. 117-122.
  • [5.43] P.C. Knight, J.P.K. Seville, Effect of binder viscosity on agglomeration processes, World Congr. Part. Technol. 3 (1998) paper #118.
  • [5.44] S.M. Iveson, J.D. Litster, Growth regime map for liquid-bound granules, AIChE J. 44 (1998) 1510-1518.
  • [5.45] A.A. Adetayo, J.D. Litster, S.E. Pratsinis, B.J. Ennis, Population balance modelling of drum granulation of materials with wide size distributions, Powder Technol. 82 (1995) 37-49.
  • [5.46] B.J. Ennis, G.I. Tardos, R. Pfeffer, A microlevel-based characterization of granulation phenomena. Powder Technol. 65 (1991) 257-272.
  • [6.1] P.C. Kapur, Balling and granulation, Adv. Chem. Eng. 10 (1978) 55-123.
  • [6.2] F. Hoornaert, P.A.L. Wauters, G.M.H. Meesters, S.E. Pratsinis, B. Scarlett, Agglomeration behaviour of powders in a lodige mixer granulator. Powder Technol. 96 (1998) 116-128.
  • [6.3] P.G. Smith, A.W. Nienow, Particle growth mechanisms in fluidised bed granulation -I. The effect of process variables, Chem. Eng.Sci. 38 (1983) 1223-1231.
  • [6.4] C.C, Huang, H.O. Kono, The granulation of partially pre-wetted alumina powders-a new concept in coalescence mechanism, Powder Technol. 55 (1988) 19-34.
  • [6.5] H. Rumpf, in: W.A. Knepper (Ed.), The Strength of Granules and Agglomerates, AIME, Agglomeration, Interscience, New York, 1962, pp. 379-418.
  • [6.6] P. Holm, T. Schaefer, H.G. Kristensen, Granulation in high-speed mixers: Part V. Power consumption and temperature changes during granulation, Powder Technol. 43 (1985) 213-223.
  • [6.7] C.E. Capes, P.V. Danckwerts, Granule formation by the agglomeration of damp powders: Part 1. The mechanism of granule growth, Trans. I. Chem. Eng. 43 (1965) 116-124.
  • [6.8] P.C. Kapur, D.W. Fuerstenau, Kinetics of green pelletization, Trans. Soc. Min. AIME 229 (1964) 348-355.
  • [6.9] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 2. Effects of particle size distribution, Powder Technol. 44 (1985) 239-247.
  • [6.10] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 1. Deformability of moist, densified agglomerates, Powder Technol. 44 (1985) 227-238.
  • [6.11] N. Ouchiyama, T. Tanaka, Stochastic model for compaction of pellets in granulation, Ind. Eng. Chem. Fundam. 19 (1980) 555-560.
  • [6.12] S.M. Iveson, J.D. Litster, BJ. Ennis, Fundamental studies of granule consolidation: Part 1. Effects of binder viscosity and binder content, Powder Technol. 88 (1996) 15-20.
  • [6.13] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms: Part 2. Effects of particle size distribution, Powder Technol. 44 (1985) 239-247.
  • [6.14] H. Rumpf, in: W.A. Knepper (Ed.), The Strength of Granules and Agglomerates, AIME, Agglomeration, Interscience, New York, 1962, pp. 379-418.
  • [6.15] N. Ouchiyama, T. Tanaka, Stochastic model for compaction of pellets in granulation, Ind. Eng. Chem. Fundam. 19 (1980) 555-560.
  • [6.16] B.J. Ennis, G.I. Tardos, R. Pfeffer, A microlevel-based characterization of granulation phenomena. Powder Technol. 65 (1991) 257-272.
  • [6.17] S.M. Iveson, J.D. Litster, Fundamental studies of granule consolidation: Part 2: Quantifying the effects of particle and binder properties, Powder Technol. 99 (1998) 243-250.
  • [6.18] P.C. Kapur, Balling and granulation, Adv. Chem. Eng. 10 (1978) 55-123.
  • [6.19] J.D. Litster, B.J. Ennis, The Science and Engineering of Granulation Processes. Particle Technology Series. B. Scarlett, 2004 Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • [6.20] B.J. Ennis, G.I. Tardos, R. Pfeffer, A microlevel-based characterization of granulation phenomena. Powder Technol. 65 (1991) 257-272.
  • [6.21] S. Hohekamp, M. Pohl, Porosity measurement of fragile agglomerates, Powder Technol. 130 (2003) 385-392.
  • [6.22] J.S. Fu, Y.S. Cheong, G.K. Reynolds, M.J. Adams, A.D. Salman, M.J. Hounslow, An experimental study of the variability in the properties and quality of wet granules, Powder Technol. 140 (2004) 209-216.
  • [6.23] T. Gluba, R. Grabowski, The effect of particle size distribution and degree of wetting on the rate of granule concentration during dolomite granulation, Proceedings of the 14th International Congress of Chemical and Process Engineering, CHISA 2000.
  • [6.24] T. Gluba, A. Obraniak, Drum granulation of mineral raw materials with different particle size distributions, Proceedings of the XXI International Mineral Processing Congress, Italy, 2000.
  • [6.25] T. Gluba, R. Grabowski, Kinetyka zagęszczania granulek w procesie granulacji dolomitu, Zeszyty naukowe PŁ, Inżynieria Chemiczna i Procesowa, nr 838, z. 27, 2000.
  • [6.26] T. Gluba, R. Grabowski, The effect of wetting conditions on granule porosity, Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej Nr 95, 2001.
  • [6.27] T. Gluba, The effect of wetting liquid droplet size on the growth of agglomerates during wet drum granulation, Powder Technol. 130 (2003) 219-224.
  • [6.28] T. Gluba, The effect of bed wetting conditions on the quality of a product obtained during drum granulation, Proceedings of the 15th International Congress of Chemical and Process Engineering, CHISA 2002.
  • [6.29] T. Gluba, Wpływ rozdrobnienia surowca i wielkości kropel cieczy zwilżającej na właściwości produktu mokrej granulacji bębnowej, Inżynieria i Aparatura Chemiczna, 43 Nr 3s (2004) 43-44.
  • [6.30] T. Gluba, The energy of bed processing during drum granulation, Proceedings of the 4th International Conference for Conveying and Handling of Particulate Solids, Budapest, 2003.
  • [6.31] T. Gluba, The energy of bed processing during drum granulation, Chemical Engineering and Processing 44 (2005) 237-243.
  • [7.1] T. Gluba, R. Grabowski, The effect of wetting conditions on granule porosity, Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej 95, Konferencje 31 (2001) 15-24.
  • [7.2] F. Podczeck, G. Lee-Amies, The bulk volume changes of powders by granulation and compression with respect to capsule filling, International Journal of Pharmaceutics, 142 (1996) 97-102.
  • [7.3] A. Obraniak, Dynamika złoża ziarnistego w poziomych bębnach obrotowych, Praca doktorska, Wydział Inżynierii Proc. i Ochrony Środowiska PŁ (2002).
  • [7.4] K. Zuurman, G.K. Bolhuis, H. Vromans, Effect of binder on the relationship between bulk density and compactibility of lactose granulations, International Journal of Pharmaceutics, 119 (1995) 65-69.
  • [7.5] A.B. Yu, N. Standish, L. Lu, Coal agglomeration and its effect on bulk density, Powder Technology, 82 (1995) 177-189.
  • [7.6] T. Gluba The Effect of Interfacial Surface Development on the Properties of Wet Drum Granulation Product, Proceedings of the 4th European Congress of Chemical Engineering, (2003) Granada.
  • [7.7] T. Gluba, A. Obraniak, E. Gawot-Młynarczyk The effect of granulation conditions on bulk density of a product, Physicochemical Problems of Mineral Processing, 38 (2004) 177-186.
  • [7.8] T. Gluba, A. Heim, Wzrost aglomeratów w procesie mokrej granulacji bębnowej surowca mineralnego o różnym składzie ziarnowym, Inż. Chem. i Proc., 21 (2000) 329-344.
  • [7.9] T. Gluba, A. Obraniak Drum granulation of mineral raw materials with different particle size distribution, Proceedings of the XXI International Mineral Processing Congress, Italy, (2000) C4-36.
  • [8.1] H. Błasiński, T. Gluba, Metody i aparaty do pomiaru wytrzymałości aglomeratów, Inż. i Aparat. Chem., 4, (1981) 29-33.
  • [8.2] D.G. Bika, M. Gentzler, J.N. Michaels, Mechanical properties of agglomerates, Powder Technology, 117 (2001) 98-112.
  • [8.3] W. Pietsch, Size Enlargement by Agglomeration, Wiley, UK, 1991.
  • [8.4] M.E. Fayed, L. Oten (Eds.), Handbook of Powder science and Technology, Chapman &Hall, New York, 1997.
  • [8.5] K. Gotoh, H. Masuda, K. Higashitani, Powder Technology Handbook, 2nd ed., Marcel Dekker, New York, 1997.
  • [8.6] R.C. Rowe, R.J. Roberts, Advances in Pharmaceutical Sciences, Academic Press, London, 1995.
  • [8.7] H. Schubert, Tensile strength of agglomerates, Powder Technology, 11 (1975) 107-119.
  • [8.8] G.A. Turner, M. Balasubramanian, Investigations of the Contributions to the Tensile Strength of Weak Particulate Masses, Powder Technology 10 (1974) 121-127.
  • [8.9] H. Schubert, W. Herrmann, H. Rumpf, Deformation Behaviour of Agglomerates under Tensile Stress, Powder Technology 11 (1975) 121-131.
  • [8.10] W. Pietsch, Die Festigkeit von Agglomeraten, Chem. Techn., 19 (1967).
  • [8.11] A. Heim, T. Gluba, Wytrzymałość na ściskanie kulistych aglomeratów otrzymanych w procesie mokrej granulacji bębnowej, Inż. Chem. I Proc. 5 (1984) 433-448.
  • [8.12] T. Gluba, W. Antkowiak, Effect of wetting on granule abrasion resistance. Aufbereitungs-Technik, 2 (1988) 76-80.
  • [8.13] H. Rumpf, The strength of granules and agglomerates, in W.A. Knepper (Ed.), AIME, Agglomeration, Interscience, New York, 1962, pp.379-418.
  • [8.14] H.G. Kristensen, P. Holm, T. Schaefer, Mechanical Properties of moist agglomerates in relation to granulation mechanisms: Part 1. Deformability of moist, densified agglomerates; Part 2. Effects of particle size distribution, Powder Technology, 44 (1985) 227-247.
  • [8.15] H. Rumpf; Grundlagen und methoden der granulierung, Chem. Ing. Techn. 30 (1958) 144-158.
  • [8.16] K. Kendall in M.J. Adams, B.J. Briscoe (Eds.) Tribology in Particulate Technology, IOP Publishing, Bristol, 1987, p. 110.
  • [8.17] Y. Hiramatsu, Y. Oka, Determination of the tensile strength of rock by a compression test of an irregular test piece, Int. J. Rock Mech. Min. Sci. 3 (1966) 89-99.
  • [8.18] K. Shinohara, C.E. Capes, Effect of distributed loading on stress patterns in discoidal agglomerates during diametrical compression test, Powder Technol. 24 (1979) 179-186.
  • [8.19] A.A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221 (1921) 163.
  • [8.20] B.W. Darvell, J. Mater. Sci., 25 (1990) 757.
  • [8.21] S. Antonyuk, J. Tomas, S. Heinrich, L. Morl, Breakage behavior of spherical granules by compression, Chem. Eng. Sci. 60 (2005) 4031-4044.
  • [8.22] S.M. Iveson, N.W. Page, Tensile bond strength development between liquid-bound pellets during compression, Powder Technology, 117 (2001) 113-122.
  • [8.23] Y. Li, D. Wu, J. Zhang, L. Chang, D. Wu, Z. Fang, Y. Shi, Measurement and statistics of single pellet mechanical strength of differently shaped catalysts, Powder Technology, 113 (2000) 176-184.
  • [8.24] K.T. Chau, X.X. Wei, R.H.C. Wong, T.X. Yu, Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses, Mechanics of Materials 32 (2000) 543-554.
  • [8.25] S.P. Timoshenko, J.N. Goodier, Theory of Elasicity, third ed. McGraw-Hill, New York (1973).
  • [8.26] G.M. Walker, H.E.M.N. Moursy, C.R. Holland, M.N. Ahmad, Effect of process parameters on the crush strength of granular fertiliser, Powder Technology 132 (2003) 81-84.
  • [8.27] J. Coury, M. Aguiar, Rupture of dry agglomerates, Powder Technology 85 (1995) 37-43.
  • [8.28] S.M. Iveson, J.A. Beathe, N.W. Page, The dynamic strength of wet powder compacts at varying strain rates, 1st Asia Particle Technology Forum (APT2000), Bangkok, Thailand, 13-15 Dec. 2000.
  • [8.29] S.M. Iveson, N.W. Page, J.D. Litster, The importance of wet powder dynamic mechanical properties in understanding granulation. 7th Int. Symp. on Agglomeration, Albi, France, 29-31 May 2001.
  • [8.30] S.M. Iveson, N.W. Page, Dynamic mechanical properties of liquid-bound powder compacts, 3rd Australian Congress on Applied Mechanics, Sydney, Feb. 20-22, 2002.
  • [8.31] S.M. Iveson, N.W. Page, The dynamic strength of partially saturated powder compacts; effects of particle shape and density, World Congress of Particle Technology 4, Sydney, Australia, 21-25 July, 2002.
  • [8.32] S.M. Iveson, J.A. Beathe, N.W. Page, The dynamic strength of partially saturated powder compacts; the effects of liquid properties, Powder Technology, 127 (2002) 149-161.
  • [8.33] S.M. Iveson, N.W. Page, Brittle–to-plastic transition in the dynamic mechanical behaviour of partially saturated granular materials, J. Appl. Mech. 71 (2004) 470-475.
  • [8.34] S.M. Iveson, N.W. Page, J.D. Litster, The importance of wet-powder dynamic mechanical properties in understanding granulation. Powder Technology 130 (2003) 97-101.
  • [8.35] S.M. Iveson, N.W. Page, dynamic strength of liquid-bound granular materials; The effect of particle size and shape, Powder Technology, 152 (2005) 79-89.
  • [8.36] G.K. Reynolds, J.S. Fu, Y.S. Cheong, M.J. Hounslow, A.D. Salman, Breakage in granulation: A review, Chemical Engineering Science 60 (2005) 3969-3992.
  • [8.37] A.D. Salman, G.K. Reynolds, J.S. Fu, Y.S. Cheong, Y. Biggs, C. Adams, M. Gorham, D. Lukenics, J. Hounslow, Descriptive classification of the impact failure modes of spherical particles, Powder Technology 143-144 (2004) 19-30.
  • [8.38] M.M. Chaudhri, Impact breakage of semi-brittle spheres, Powder Technology 143-144 (2004) 31-40.
  • [8.39] K. Schönert, Breakage of spheres and circular discs, Powder Technology 143-144 (2004) 2-18.
  • [8.40] S.M. Iveson, J.D. Litster, Liquid-bound granule impact deformation and coefficient of restitution, Powder Technology 99 (1998) 234-242.
  • [8.41] C. Thornton, L. Liu, How do agglomerates break?, Powder Technology 143-144 (2004) 110-116.
  • [8.42] D. Verkoeijen, G.M.H. Meesters, P.H.W. Vercoulen, B. Scarlett, Determining granule strength as function of moisture content, Powder Technology 124 (2002) 195-200.
  • [8.43] A.G. Evans, T.R. Wilshaw, Acta Metall. 24 (1976) 939.
  • [8.44] J.E. Gwyn, AIChE J. 15 (1969) 35. cyt. wg [8.39].
  • [8.45] A.U. Neil, J. Bridgwater, Towards a parameter characterising attrition, Powder Technology 106 (1999) 37-44.
  • [8.46] X. Jiang, L. Zhou, J. Liu, X. Han, A model on attrition of quartzite particles as a bed material in fluidized beds, Powder Technology (2009), doi:10.1016/j.powtec.2009.05.009.
  • [8.47] X. Pepin, S.J.R. Simons, S. Blanchon, D. Rossetti, G. Couarraze, Hardness of moist agglomerates in relation to interparticle friction, granule liquid content and nature, Powder Technology 117 (2001) 123-138.
  • [8.48] H. Błasiński, T. Gluba; "Urządzenie do badania wytrzymałości granulatu"; W-73102; 1979-08-01; Wzór użyt. PRL nr 38628; 1984-12-28.
  • [8.49] T. Gluba; The effect of particle size distributions of a raw material on the strength properties of a product obtained during drum granulation (summaries: Mechanical and Heat Transfer Processes and Equipment nr 3, s. 241, CD-ROM P1.182); 14th International Congress of Chemical and Process Engineering CHISA'2000 (27-31.08); Praha, Czech Republic; 2000.
  • [8.50] A. Biń, J. Korytkowski, Przemysł Chemiczny, 10 (1982).
  • [8.51] T. Gluba, The effect of wetting conditions on the strength of granules, Physicochemical Problems of Mineral Processing, 36 (2002)233-242.
  • [8.52] T. Gluba, Ocena jakości produktu mokrej granulacji bębnowej, Inż. Apar.Chem., nr 3s (2003) 43-45.
  • [8.53] T. Gluba, Wpływ rozdrobnienia surowca i wielkości kropel cieczy zwilżającej na właściwości produktu mokrej granulacji bębnowej, Inż. Apar. Chem., 43 (35) 3s., 43-44, 2004.
  • [8.54] T. Gluba, Wpływ rozdrobnienia surowca i wielkości kropel cieczy zwilżającej na właściwości produktu mokrej granulacji bębnowej, XVIII Konferencja Naukowa Inżynierii Chemicznej i Procesowej (15-18.06), Gliwice-Szczyrk, 2004.
  • [8.55] T. Gluba, A. Obraniak; "Wpływ składu ziarnowego surowca na właściwości wytrzymałościowe produktu granulacji bębnowej"; Zesz. Nauk. P. Łódź Inż. Chem. i Proc.; 839; z. 28, s. 83-90; 2000.
  • [8.56] T. Gluba, A. Obraniak; "Wpływ składu ziarnowego surowca na właściwości wytrzymałościowe produktu granulacji bębnowej"; II Ogólnopolska Konferencja "Operacje mechaniczne inżynierii procesowej" (14-16.06); Łódź-Spała; 2000.
  • [9.1] Z.B. Kantorowicz, Maszyny przemysłu chemicznego, PWT, Warszawa 1959.
  • [9.2] W.I. Koroticz, Dwiżenije sypucziewo matieriała wo wraszczajuszczemsa barabanie, Stal, 8 (1961) 680-686.
  • [9.3] Y. Oyama, Studies on Mixing of Binary System of Two Size by Ball Mill Motion, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) No 951, 37 (1940) 17-29.
  • [9.4] Y. Oyama, K. Ayaki, Mixing of Particulate Solids, Kagaku Kogaku, 20 (1956) 148-155.
  • [9.5] P. Kłassien, I. Griszajew, Podstawy techniki granulacji, WNT, Warszawa 1989.
  • [9.6] A. Heim, T. Gluba, B. Kochański, A. Obraniak, T. Załuga, Kształt przekroju poprzecznego warstwy ziarnistej w bębnie obrotowym, Inżynieria Chemiczna i Procesowa, 1, (1995) 95-116.
  • [9.7] A. Heim, T. Gluba, B. Kochański, A. Obraniak, T. Załuga Warunki pracy bębna obrotowego z wypełnieniem ziarnistym, XIV Ogólnopolska Konferencja Teorii Maszyn i Mechanizmów Gdańsk/Gdynia (1994), 223-28.
  • [9.8] T. Gluba, A. Heim, B. Kochański, A. Obraniak, T. Załuga, Badania dynamiki wsadu ziarnistego w obrotowym bębnie, XV Ogólnopolska Konferencja Naukowa Inżynierii Chemicznej i Procesowej Gdańsk 1995, tom I.
  • [9.9] A. Heim, T. Gluba, A. Obraniak, Zapotrzebowanie mocy do napędu granulatora bębnowego, V Ogólnopolskie Sympozjum GRANULACJA, Puławy 1995.
  • [9.10] J. Mellmann, The transverse motion of solids in rotating cylinders – forms of motion and transition behaviour. Powder Technology, 118 (2001) 251-270.
  • [9.11] T. Gluba, A. Heim, A. Obraniak, Driving torque in the process of drum granulation CHISA 2000, Prague.
  • [9.12] T. Gluba, Drum granulation conditions for raw material with different particle size distributions, Handbook of Conveying and Handling of Particulate Solids, Elsevier Science B.V., 2001, 717-723.
  • [9.13] T. Gluba, The energy of bed processing during drum granulation, Chemical Engineering and Processing 44 (2005) 237-243.
  • [9.14] A. Heim, T. Gluba, A. Obraniak, Moment obrotowy, jako wskaźnik realizacji procesu granulacji bębnowej; Inż. Apar. Chem.; 42(34); z. spec. 3, s. 60-61; 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0001-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.