PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechaniczna dezintegracja komórek mikroorganizmów

Autorzy
Identyfikatory
Warianty tytułu
EN
Mechanical disintegration of microbial cells
Języki publikacji
PL
Abstrakty
PL
Zamieszczono krytyczną analizę modelowania matematycznego procesu dezintegracji komórek mikroorganizmów realizowanego w młynach perełkowych. Wykazano konieczność prowadzenia dalszych rozważań i badań celem dotarcia do natury zjawisk występujących podczas technologicznego uwalniania związków wewnątrzkomórkowych. Skuteczność prowadzonych tak ukierunkowanych działań może przyczynić się do osiągnięcia dalszego znaczącego postępu technicznego. Przedstawiono opracowaną teorię losowego przekształcania rozproszonych obiektów materialnych w ograniczonym ośrodku. Na jej podstawie zbudowano ogólny model fenomenologiczny oparty na cyrkulacji masy pomiędzy rodzajami objętości różniącymi się właściwościami. W modelu założono możliwości przekształcania materii w wyniku działania czynników fizycznych, chemicznych lub biologicznych w rozproszonych rodzinach objętości generowanych losowo, w przestrzeni ośrodka materialnego. Przedstawiono ogólny opis matematyczny przekształcania materii w postaci układu nieliniowych równań różniczkowych pierwszego rzędu. Podano obszary zastosowań teorii do badania, modelowania, optymalizacji lub zarządzania procesami w takich dziedzinach, jak technologia przemysłowa, ochrona środowiska, chemia, biologia, medycyna, weterynaria, higiena i rolnictwo. Wykazano możliwość analizowania fundamentalnych zjawisk i mechanizmów badanych procesów. Teorię przekształcania materii rozproszonej wykorzystano do modelowania dezintegracji mikroorganizmów. Zbudowano model fenomenologiczny procesu przeprowadzanego w wypełnieniu elementami sferycznymi. Badania wykonano dla drożdży piekarskich Sacchawmyces cerevisiae dezintegrowanych w młynie perełkowym. Kinetykę rozrywania komórek wyznaczono za pomocą komputerowej analizy obrazów mikroskopowych. Przebieg uwalniania związków wewnątrzkomórkowych badano metodą Bradforda oraz na podstawie pomiarów absorbancji przy długości fali 260 nm. Przeprowadzono badania wpływu dezintegracji komórek na własności reologiczne zawiesiny drożdży i otrzymywanego z niej supernatantu. Wykazano znaczny wpływ wielkości mikroorganizmów na stałą szybkość ich rozrywania. Przedstawiono oparty na modelu fenomenologicznym matematyczny opis procesu. Wykazano możliwość występowania nieliniowego przebiegu dezintegracji spowodowanego zanikaniem w trakcie procesu kolejno największych frakcji rozmiarowych komórek. Przy bardzo małej koncentracji mikroorganizmów prawdopodobieństwo wystąpienia takiego efektu jest bardzo duże. Jego wartość maleje wraz ze zwiększaniem stężenia biomasy. W oparciu o matematyczny model wykazano znaczną intensyfikację oddziaływań między komórkami wraz ze zwiększaniem stężeń zawiesiny w zakresie dużych jej wartości. Rezultaty te potwierdzono wynikami badań Teologicznych. Podano hipotezy odchyleń przebiegu procesu od liniowości dla dużych i bardzo dużych stężeń zawiesiny.
EN
A critical analysis of mathematical modeling of microbial cells disintegration in bead mills is presented. Further studies and researches have been proven necessary to explain the nature of phenomena that occur during technological release of intracellular compounds. The efficacy of such researches can help us achieve further significant technical progress. A theory of random transformation of material objects dispersed in a limited medium has been proposed. This was a starting point for a general phenomenological model based on mass circulation between volumes with different characteristics. A possibility of matter transformation induced by physical, chemical or biological agents active in dispersed families of volumes generated randomly in the material medium was assumed in the model. A general mathematical description of matter transformation in the form of a system of nonlinear differential first-order equations was proposed. The areas in which the theory can be applied in researches, modeling, optimization or process management in such fields as industrial technology, environmental protection, chemistry, biology, medicine, veterinary medicine, hygiene and agriculture were mentioned. A possibility of analyzing fundamental phenomena and mechanisms of the investigated processes was demonstrated. The theory of disperse matter transformation was used in modeling the disintegration of microorganisms. A phenomenological model of the process carried out in the spherical elements packing was built. Investigations were made for baker's yeast Saccharomyces cerevisiae disintegrated in a bead mill. Cell disruption kinetics was determined by means of a computer analysis of microscopic images. The release of intracellular compounds was examined by Bradford's method and on the basis of absorbance measurements at the wavelength of 260 nm. The effect of cell disintegration on rheological properties of yeast suspension and supernatant obtained from it was studied. A considerable effect of the microorganism size on the constant rate of its disruption was revealed. A mathematical description of the process based on the phenomenological model was presented. It was shown that nonlinearity of disintegration instigated by the decay of subsequent biggest cell fractions during the process was possible. This probability, which was very high at a small concentration of microorganisms, decreased with an increase of biomass concentration. Basing on the mathematical model, it was shown that interactions between cells were notably intensified at high concentrations of the suspension. These results were confirmed by rheological studies. Hypotheses concerning deviations of the process from linearity for high and very high concentrations of the suspension were given.
Rocznik
Tom
Strony
1--95
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
autor
  • Wydział Inżynierii Procesowej i Ochrony Środowiska
Bibliografia
  • [1] Aiba S., Humphrey A.E., Millis N.F., Inżynieria biochemiczna. WNT, Warszawa (1977).
  • [2] Agerkvist I., Enfors S-O., Characterization of E. coli cell disintegrates from a bead mill and high-pressure homogenizers. Biotechnol. Bioeng. 36 (1990) pp. 1083-1089.
  • [3] Atkins P.W., Physical Chemistry. Oxford University Press, Walton Street, Oxford (1978).
  • [4] Baldwin C, Robinson C.W., Disruption of Saccharomyces cerevisiae using enzymatic lysis combined with high-pressure homogenization. Biotechnol. Tech. 4 (5) (1990) pp. 329-334.
  • [5] Benthin S., Nielsen J., Villadsen J., A simple and reliable method for the determination of cellular RNA content. Biotechnol. Tech. 5 (1) (1991) pp. 39-42.
  • [6] Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) pp. 248-254.
  • [7] Bunge F., Pietzsch M., Müller R., Syldatk C, Mechanical disruption of Arthrobacter sp. DSM 3747 in stirred ball mills for the release of hydantoin-cleaving enzymes. Chem. Eng. Sci. 47 (1992) pp. 225-232.
  • [8] Chen J., Chen H., Gong X., Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour. Technol. 62 (1997) pp. 19-24.
  • [9] Chick H., An investigation of the laws of disinfection. J. Hyg. 8 (1908) pp. 92-158.
  • [10] Chisti Y., Moo-Young M., Disruption of microbial cells for intracellular products. Enzyme Microb. Technol. 8 (1986) pp. 194-204.
  • [11] Currie J. A., Dunnil P., Lilly M.D., Release of protein from bakers’ yeast (Saccharomyces cerevisiae) by disruption in an industrial agitator mill. Biotechnol. Bioeng. 14 (1972) pp. 723-736.
  • [12] Daulah M.S., Mechanism o disintegration of biological cells in ultrasonic cavitation. Biotechnol. Bioeng. 19 (1977) pp. 649-660.
  • [13] Engler C.R., Robinson C.W., Disruption of Candida utilis cells in high pressure flow devices. Biotechnol. Bioeng. 23 (1981) pp. 765-780.
  • [14] Esche R., Untersuchung der Schwingungskavitation in Flüssigkeiten. Acoustica (Akustische Beihefte), 2 (1952) Ss. 208-219.
  • [15] Fish N.M., Lilly M.D., The interactions between fermentation and protein recovery. Biotechnol. 2 (1984) pp. 623-627.
  • [16] Follows M., Hetherington P.J., Dunnill P., Lilly M.D., Release of enzymes from bakers’ yeast by disruption in an industrial homogenizer. Biotechnol. Bioeng. 13 (1971) pp. 549-560.
  • [17] Geciova J., Bury D., Jelen P., Methods for disruption of microbial cells for potential use in the dairy industry - a review. Int. Dairy J. 12 (2002) pp. 541-553.
  • [18] Garrido F., Banerjee U.C., Chisti Y., Moo-Young M., Disruption of a recombinant yeast for the release of beta-galactosidase. Biosep. 4 (1994) pp. 319-328.
  • [19] Gray P.P., Dunnill P., Lilly M.D., The continuous-flow isolations of enzymes, in Terui G. (Ed.) Fermentation Technology Today, Society of Fermentation Technology, Japan (1972) pp. 347-351.
  • [20] Hatti-Kaul R., Mattiasson B., Release of protein from biological host, in Hatti- Kaul R. & Mattiasson B. (Eds), Isolation and purification of proteins, ISBN 0-8247- 0726-5, Marcel Deker, Inc, New York, Basel, (2003) pp. 22-49.
  • [21] Hartmann C, Mathmann K., Delgado A., Mechanical stresses in cellular structures under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 7 (2006) pp. 1-12.
  • [22] Heim A., Czerski R., Disintegration of yeast Saccharomyces cerevisiae in the vertical perl mill with a bell-shaped impeller. Bioprocess Eng. 13, 1 (1995) pp. 23-30.
  • [23] Heim A., Filipczak I., Solecki M., Kinetyka uwalniania białka z komórek drożdży Saccharomyces cerevisiae. Inż. Chem. Proc. 25 (3/2) (2004) ss. 987-992.
  • [24] Heim A., Kamionowska U., Solecki M., Proces dezintegracji komórek drożdży w młynie perełkowym. Przem. Chem., 82, 8-9, (2) (2003) ss. 1084-1086.
  • [25] Heim A., Kamionowska U., Solecki M., The effect of microorganism concentration on yeast cell disruption in a bead mill. J. Food Eng. 83 (2007) pp. 121-128.
  • [26] Heim A., Solecki M., Disintegration of microorganisms in a circulating bed of balls. Proceedings of the 3rd World Congress on Particle Technology, CD-ROM, ISBN 0-85295-401-8, pp. 1-10., Brighton UK, 6-9 July 1998.
  • [27] Heim A., Solecki M., Disintegration of microorganisms in bead mill with a multi-disc impeller. Powder Technol. 105 (1999) pp. 390-396.
  • [28] Heim A., Solecki M., Dezintegracja komórek mikroorganizmów w przepływowych młynach mieszalnikowym. Inż. Chem. Proc. 21 (2) (2000) ss. 311-327.
  • [29] Heim A., Solecki M., Yeast disintegration in a classical bead mill equipped with stationary baffles. Inż. Chem. Proc. 23 (1) (2002) pp. 5-19.
  • [30] Heim A., Solecki M., Disruption kinetics of yeast cells in a bead mills. Proceedings of the 4th World Congress on Particle Technology, CD-ROM, ISBN 085 825 7947, nr 33, pp. 1-9, Sydney, Australia, 21-25 July 2002.
  • [31] Heim A., Solecki M., Effect of the concentration of microorganism suspension on cell disintegration in a bead mill. Proceedings of the 6th World Congress of Chemical Engineering, CD-ROM, Melbourne, Australia, 23-27 September 2001.
  • [32] Heim A., Solecki M., Czerski R., Yeast disintegration in the ball mills in the flow conditions, 13th International Congress of Chemical and Process Engineering CHISA'98", CD-ROM of full texts P1.79, Summaries 7 p. 121, ISBN 80-86059-26- X, Praha, Czech Republic, 23-28 August 1998.
  • [33] Hetherington P.J., Follows M., Dunnill P., Lilly M.D., Release of protein from baker’s yeast (Saccharomyces cerevisiae) by disruption in an industrial homogeniser. Trans. Inst. Chem. Eng. 49 (1971) pp. 142-148.
  • [34] Herbert D., Phipps P.J., Strange R.E., Chemical analysis of microbial cells. Methods Microbiol. 5B (1971) pp. 209-344.
  • [35] Ho D.D., Neumann A.U., Perelson A.S., Chen W., Leonard J.M., Markowitz M., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nat. 373 (1995) pp. 123-126.
  • [36] Hunt N.K., Maria?as B.J., Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Wat. Res. 33, 11 (1999) pp. 2633-2641.
  • [37] James C.J., Coakley W.T., Hughes D.E., Kinetics of protein release from yeast sonicated in batch and flow systems at. 20 kHz. Biotechnol. Bioeng. 14 (1972) pp. 33-42.
  • [38] Kamiwano M., Kaminoyama M., Arai K., 11-th International Congress of Chemical and Process Engineering, Praha, Czech Republic, 19-23 July 1993.
  • [39] Kermack W.O., McKendrick A.G., Contributions to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115 (1927) pp. 700-721.
  • [40] Keshavarz Moore E., Hoare M., Dunnill P., Disruption of baker's yeast in a high-pressure homogenizer: New evidence on mechanizm. Enzyme Microb. Technol., 12, 10 (1990) pp. 764-770.
  • [41] Kolmogorov A. N., Lokal'naa struktura turbulentnosti v neszimaemoj vazkoj zidkosti pri ocen' bol'sih cislah Rejnol'dsa. Doklady AN CCCP, 30 (1941) Cc. 299-303.
  • [42] Kolmogorov a> N., Rasseanie energii pri lokal'noizotropnoj turbulentnosti. Doklady AN CCCP, 32, (1941) Cc. 19-21.
  • [43] Kula M.R., Shiitte H., Purification of proteins and the disruption of microbial cells. Biotechnol. Prog. 3 (1987) pp. 31-42.
  • [44] Lilly M.D., Applied Biochemistry and Bioengineering, in Wingred Jr. L.B., Katchalski-Katzir E. and Goldstein L. (Eds), Academic Press, New York, 2 (1979) p. 1.
  • [45] Limon-Lason J., Hoare M., Orsborn C.B., Doyle D.J., Dunnill P., Reactor properties of a high-speed bead mill for microbial cell rupture. Biotechnol. Bioeng. 21 (1979) pp. 745-774.
  • [46] Lotka A.J., Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42 (1920) pp. 1595-1599.
  • [47] Lowry O.H., Rosenbough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) pp. 265-275.
  • [48] Mancini M., Moresi M., Rheological behaviour of baker’s yeast suspension. J. Food Eng. 44 (2000) pp. 225-231.
  • [49] Mao H.H., Moo-Young M., Disruption of baker’s yeast by a new bead mill. Biotechnol. Tech. 4 (1990) pp. 335-340.
  • [50] Marffy F., Kula M.R., Enzyme yields from cells of brewer’s yeast disrupted by treatment in a horizontal disintegrator. Biotechnol. Bioeng. 16 (1974) pp. 623-634.
  • [51] Mashmoushy H., Zhang Z., Thomas C.R., Micromanipulation measurement of the mechanical properties of baker’s yeast cells. Biotechnol. Tech. 12, 12 (1998) pp. 925-929.
  • [52] Melendres A.V., Honda H., Shiragam N., Unno H., A kinetic analysis of cell disruption by bead mill. Biosep. 2 (1991) pp. 231-236.
  • [53] Melendres A.V., Honda H., Shiragami N., Unno, H., Enzyme release kinetics in a cell disruption chamber of a bead mill. J. Chem. Eng. Jap. 26 (2) (1993) pp. 148-152.
  • [54] Melendres A.V., Unno H., Shiragami N., Honda H., A Concept of critical velocity for cell disruption by bead mill. J. Chem. Eng. Jap. 25 (3) (1992) pp. 354-356.
  • [55] Michaelis L., Menten M.I., Die Kinetik der Invertinwirkung. Biochem. Z. 49 (1913) Ss. 333-369.
  • [56] Middelberg A.P.J., O’Neill B.K., Bogle I.D.L., Snoswell M.A., A novel technique for the measurement of disruption in high-pressure homogenization: Studies on E. coli containing recombinant inclusion bodies. Biotechnol. Bioeng. 38 (1991) pp. 363-370.
  • [57] Mogren H., Lindblom M., Hedenskog G., Mechanical disintegration of microorganisms in an industrial homogenizer. Biotechnol. Bioeng. 16 (1974) pp. 261-274.
  • [58] Perelson A.S., Neumann A.U., Markowicz M., Leonard J.M., Ho D.D., HIV-1 dynamics in vivo: Virionclearance rate, infected life-span, and viral generation time. Sci. 271 (1996) pp. 1582-1586.
  • [59] Perelson A.S., Ostera G.F., Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination. J. Theor. Biol. 81 (1979) pp. 645-670.
  • [60] Ricci-Silva M.E., Vitolo M., Abrahao-Neto J., Protein and glucose 6-phosphate dehydrogenase releasing from baker’s yeast cells disrupted by a vertical bead mill. Process Biochem. 35 (2000) pp. 831-835.
  • [61] Sauer T., Robinson C.W., Glick B.R., Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer. Biotechnol. Bioeng. 33 (1989) pp. 1330-1342.
  • [62] Schütte H., Kroner K.H., Hustedt H., Kula M.R., Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol. 5, (1983) pp. 143-148.
  • [63] Schütte H., Kula M.R., Analytical disruption of microorganisms in a mixer mill. Enzyme Microb. Technol. 10 (1988) pp. 552-558.
  • [64] Schütte H., Kula M.R., Bead mill disruption, in Asenjo J.A. (Ed.) Separation processes in Biotechnology, Marcel Dekker, New York, (1990) pp. 107-141.
  • [65] Schütte H., Kula M.R., Cell disruption and isolation of non-secreted products, in Stephanopoulos G. (Ed.) Biotechnology, VCH, New York, (1993) pp. 505-526.
  • [66] Shiu C., Zhang Z., Thomas C.R., A novel technique for the study of bacterial cell mechanical properties. Biotechnol. Tech. 13 (1999) pp. 707-713.
  • [67] Smith A.E., Moxham K.E., Middelberg A.P.J., On uniquely determining cell-wall material properties with the compression experiment, Chem. Eng. Sci. 53 (1998) pp. 3913-3922.
  • [68] Smith A.E., Zhang Z., Thomas C.R., Wall material properties of yeast cells: Part 1. Cell measurements and compression experiments, Chem. Eng. Sci. 55 (2000) pp. 2031-2041.
  • [69] Solecki M., Analiza pracy młynów perełkowych poziomych. Rozprawa doktorska, Politechnika Łódzka (1998).
  • [70] Solecki M., Analysis of methods for description of yeast cell morphology. Proceedings of the 5th World Congress on Particle Technology, CD-ROM, 1-9, ISBN 0-8169-1005-7. Orlando, Florida, USA, 23-27 April 2006.
  • [71] Solecki M., Desintegration of mikroorganisms in bead mill, 5th International Conference for Conveying and Handlings of Particulate Solids, Sorrento, Italy, 27-31 August 2006.
  • [72] Solecki M., Yeast disintegration in a bead mill. Chem. Proc. Eng. 28 (2007) pp. 649-660.
  • [73] Solecki M., The investigations of disruption areas of yeasts between the spherical surfaces, 5th International Conference for Conveying and Handlings of Particulate Solids, Wypych P. (Ed.), Conference Proceedings, Brisbane QLD Australia (2009) Engineers Australia181-186. ISBN 978-0858 259 065, Brisbane, Australia, 3-7 August 2009.
  • [74] Solecki M., Modelowanie procesu dezintegracji mikroorganizmów w młynach perełkowych. Inż. Ap. Chem. 48 (4) (2009) ss. 120-121.
  • [75] Solecki M., The theory of random transformation of dispersed matter. (praca przygotowywana do druku).
  • [76] Solecki M., The release of compounds from microbial cells, in Nakajima H. (Ed.), Mass Transfer - Advanced Aspects, ISBN 978-953-307-636-2, InTech, Rijeka, 26 (2011) pp. 595-618. Available from: http://www.intechopen.com/articles/show/title/the-release-of-compounds-from- microbial-cells.
  • [77] Solecki M., Heim A., Owczarz P., Kilbey G., Délia M.L., Frances C, Study on the rheological properties of baker’s yeast suspension. Int. J. Appl. Mech. Eng. 10 (2005) pp. 137-142.
  • [78] Stenson J.D., Ren Y., Donald A.M., Zhang Z., Compression testing by nanomanipulation in environmental scanning electron microscope. Exp. Tech. 34, 2 (2010) pp. 60-62.
  • [79] Svaldo-Lanero T., Krol S., Magrassi R., Diaspro A., Rolandi R. Gliozzi A., Cavalleri O., Morphology, mechanical properties and viability of encapsulated cells. Ultramicroscopy 107 (2007) pp. 913-921.
  • [80] Torner M.J., Asenjo J.A., Kinetics of enzyme release from breadmaking yeast cells in a bead mill. Biotechnol. Tech. 5 (1991) pp. 101-106.
  • [81] van Gaver D., Huyghebaert A., Optimization of yeast cell disruption with a newly designed bead mill. Enzyme Microb. Technol. 13 (1990) pp. 665-671.
  • [82] Vogels G., Kula M.R., Combination of enzymatic and/or thermal pretreatment with mechanical cell disruption. Chem. Eng. Sci. 47 (1992) pp. 123-131.
  • [83] Volterra V., Variazioni e fluttuazioni del numero d’individui in specie animal conviventi. Mem Acad Lincei Roma. 2 (1926) 31-113; V. Volterra, Variation and fluctuations of the number of individuals in animal species living together, in R.N. Chapman (Ed.), Animal Ecology, McGraw-Hill, New York., 1931, pp. 409-448.
  • [84] Wang D.I.C., Cooney CL., Demain A.L., Dunnill P., Humphrey A.E., Lilly M.D., Fermentation and enzyme technology, in Wiley J. (Ed.), New York, (1979) p. 238.
  • [85] Watson H.E., A note on the variation of rate of disinfection with the change in the concentration of disinfectant. J. Hyg. 8 (1908) pp. 536-542.
  • [86] Whitworth D.A., Hydrocarbon fermentation: Protein and enzyme solubilization from C. lipolytica using an industrial homogenizer. Biotechnol. Bioeng. 16 (1974) pp. 1399-1406.
  • [87] Woodrow J.R., Quirk A.V., Evaluation of the potential of a bead mill for the release of intracellular bacterial enzymes. Enzyme Mikrob. Technol. 4 (6) (1982) pp. 385-389. 93
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0001-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.