PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zbiorniki zaporowe jako źródło emisji gazów cieplarnianych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Reservoirs as a source of greenhouse gases emission
Języki publikacji
PL
Abstrakty
PL
Obserwowane w ostatnich latach globalne ocieplenie klimatu stymuluje badania dotyczące emisji gazów szklarniowych do atmosfery zarówno ze środowisk wodnych, jak i lądowych. Za główną przyczynę efektu cieplarnianego uważa się nadmierną emisję CO2 i CH4 . Nie ma wątpliwości, że oceany pełnią kluczową rolę w globalnej wymianie gazów, ale istnieją też mocne dowody, że wody śródlądowe (zwłaszcza zbiorniki zaporowe) mogą odgrywać nieproporcjonalną do swej wielkości rolę w globalnej dynamice gazów szklarniowych. Zachodzące w zbiornikach zaporowych procesy rozkładu materii organicznej są bowiem źródłem emisji dwóch głównych gazów szklarniowych: metanu i ditlenku węgla. Oszacowano, że ok. 7% gazów szklarniowych emitowanych ze źródeł antropogenicznych stanowią gazy węglowe emitowane ze zbiorników zaporowych. W pracy zebrano informacje dotyczące emisji węglowych gazów szklarniowych ze zbiorników zaporowych w różnych strefach klimatycznych. Opisano mechanizmy tworzenia, ścieżki transportu oraz główne przemiany tych gazów w ekosystemach słodkowodnych.
EN
In aspect of global warming, scientists conducting intensive research on greenhouse gas emissions into the atmosphere from both aquatic and terrestrial environments. Excessive emissions of CO2 and CH4 are considered as the main cause of the greenhouse effect. There is no doubt that the oceans play a key role in the global exchange of gases, but there are also strong evidences that inland waters (particularly reservoirs) may play a disproportionate to their size role in the global dynamic of greenhouse gases. During the impoundment dam reservoir a certain area of land covered with vegetation is flooded, and in existing reservoir, organic matter is produced in the process of primary production and delivered from the catchment. The collected organic material dies, shall be deposited in the bottom sediments, where it is decomposed by bacteria. Depending on the oxygen conditions, CO2 or CO2 and CH4 are the end product of decomposition. Because during transport of gases to the interface water - atmosphere they are transformed microbiologically, the amount of greenhouse gases released from the sediment is not equal to the size of the emitted into the atmosphere. It was estimated that approximately 7% of greenhouse gas carbon emissions from anthropogenic sources are the gases emitted from reservoirs. The most information in the literature on greenhouse gas emissions from reservoirs, concerns reservoirs which are located in tropical and boreal climatic zone. The few reports on the temperate zone. The results show that both CO2 and CH4 emissions from boreal reservoirs are small compared to the ones in the tropics. This is certainly due to the water temperature. Besides the huge difference of emissions in different climate zones also between reservoirs in the same climatic zone the differences in the greenhouse gas emissions can be significant. This indicates that there are other factors that significantly regulate greenhouse gas emissions from reservoirs into the atmosphere. These are: the content and type of organic matter deposited in the bottom sediments and the reservoir age. Hydroelectric reservoirs have long been considered as "clean" energy source. However, some scientists prove that hydropower is a significant contributor to greenhouse gas emissions and is not "climate-friendly". The results of calculations indicate that the impact of a modern gas plant on the warming is greater than high-emission boreal reservoir, but the tropical reservoir can have tens of times greater impact on the global warming than the gas plant. In this work the information about the carbon greenhouse gases emissions from reservoirs in different climatic zones is collected. The mechanisms of the formation, transport pathways and main transformation of these gases in freshwater ecosystems were described.
Rocznik
Strony
51--65
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Politechnika Rzeszowska, Katedra Inżynierii i Chemii Środowiska, al. Powstańców Warszawy 12, 35-959 Rzeszów, renatagr@prz.edu.pl
Bibliografia
  • [1] IPCC Climate Change, Synthesis Report 2007.
  • [2] Adams D.D., Baudo R., Gases (CH4, CO2 and N2) and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling, J. Limnol. 2001, 60, 1, 79-90.
  • [3] Rastogi M., Singh S., Pathak H., Emission of carbon oxide in soil, Current Science 2002, 82, 5, 510-517.
  • [4] Haese R.R., Meile C., van Cappellen P., de Lange G.J., Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea, Earth and Planetary Science Letters 2003, 212, 361-375.
  • [5] Matthews C.J.D., Joyce E.M., St. Louis V.L., Schiff S.L., Venkiteswaran J.J., Hall B.D., (Drew) Bodaly R.A., Beaty K.G., Carbon dioxide and methane production in small reservoirs flooding upland boreal forest, Ecosystems 2005, 8, 267-285.
  • [6] Sovik A.K., Klove B., Emission of N2O and CH4 from a constructed wetland in southeastern Norway, Science of the Total Environment 2007, 380, 28-37.
  • [7] Krithika R., Purvaja R., Ramesh R., Fluxes of methane and nitrous oxide from an Indian mangrove, Current Science 2008, 94, 2, 218-224.
  • [8] Wilcock R.J., Sorrell B.K., Emission of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments, Water Air Soil Pollut. 2008, 188, 155-170.
  • [9] Rogalski L., Bęś A., Warmiński K., Carbon dioxide emission to the atmosphere from overburden under controlled temperature conditions, Polish Journal of Environmental Studies 2008, 17, 3, 427-432.
  • [10] Parekh P., A preliminary revive of the impact of dam reservoirs on carbon cycling, www.irn.org/ basics/conferences/cop10/pdf/CarbonCycle.12.08.04.pdf, 2004.
  • [11] Murase J., Sugimoto A., Spatial distribution of methane in the Lake Biwa sediments and its carbon isotopic composition, Geochemical Journal 2001, 35, 257-263.
  • [12] Barker H.A., On the biochemistry of methane fermentation, Arch. Microbiol. 1936, 7, 420-438.
  • [13] Takai Y., The mechanism of methane fermentation in flooded paddy soil, Soil Sci. Plant Nutr. 1970, 6, 238-344.
  • [14] Piker L., Schmaljohann R., Imhoff J.F., Dissimilatory sulfate reduction and mathane production in Gotland Deep sediments (Baltic Sea) during a transformation period from oxic to anoxic bottom water (1993-1996), Aquat. Microb. Ecol. 1998, 14, 183-193.
  • [15] Whiticar M.J., Isotope tracking of microbial methane formation and oxidation, Mitt. Internat. Verein. Limnol. 1996, 25, 39-54.
  • [16] Oremland R.S., Biogeochemistry of methanogenic bacteria, [In:] Zendler A.J.B. (Ed.) Biology of Anaerobic Microorganisms, John Wiley & Son, New York 1988, 641-705.
  • [17] Valentine D.L., Chidthaisong A., Rice A., Reeburgh W.S., Tyler S.C., Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens, Geochimica et Cosmochimica Acta 2004, 68, 1571-1590.
  • [18] Bergier I., Novo E.M.L., Ramos F.M., Mazzi E.A., Rasera M.F.F.L., Carbon dioxide and methane fluxes in the littoral zone of a tropical Savanna Reservoir (Corumba, Brazil), Oecologia Australis 2011, 15, 3, 666-681.
  • [19] Rudd J.W.M., Taylor C.D., Methane cycling in aquatic environments, Advances in Aquatic Microbiology 1980, 2, 77-150.
  • [20] Sweerts J.-P.R.A., Dekkers T.M.J., Cappenberg T.E., Methane oxidation at the sediment-water interface of shallow eutrophic Lake Loosdrecht and deep meso-eytrophic Lake Vechten, Mitt. Internat. Verein. Limnol. 1996, 25, 197-203.
  • [21] Juutinen S., Methane fluxes and their environmental controls in the littoral zone of boreal lakes, University of Joensuu, PhD Dissertations in Biology 2004, 110.
  • [22] Ogrinc N., Lojen S., Faganeli J., A mass balance of carbon stable isotopes in an organic-rich methane-producing lacustrine sediment (Lake Bled, Slovenia), Global and Planetary Change 2002, 33, 57-72.
  • [23] Jędrysek M.O., Spatial and temporal patterns in diurnal variations of carbon isotope ratios of earlydiagenic methane from fresh water sediments, Chemical Geology 1999, 159, 241-262.
  • [24] Barros N., Cole J.J., Tranvik L.J., Prairie Y.T., Bastviken D., Huszar V.L.M., del Giorgio P., Roland F., Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude, Nature Geosciences/Advance online publication/, 2011, doi:10.1038/NGEO1211.
  • [25] Portielje R., Lijklema L., Carbon dioxide fluxes cross the air-water interface and its impact on carbon availability in aquatic systems, Limnol. Oceanogr. 1995, 40, 4, 690-699.
  • [26] Myrbo A., Shapley M.D., Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (?13CDIC) in small hardwater lakes in Minnesota and Montana, Geochimica et Cosmochimica Acta 2006, 70, 1699-2714.
  • [27] Guerin F., Abril G., Significance of pelagic aerobic methane oxidation in the methane and carbon budget of tropical reservoir, Journal of Geophysical Research 2007, 112, G03006, doi: 10.1029/2006JG000393.
  • [28] Abril G., Guerin F., Richard S., Delmas R., Galay-Lacaux C., Tremblay A., Varfalvy L., Gosse P., Santos M. A., Matvienko B., Carbon dioxide and methane emission and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochemical Cycles 2005, 19, doi: 10.1029/2005GB002457.
  • [29] Guerin F., Abril G., Serca D., Delon C., Richard S., Delmas R., Tremblay A., Varfalvy L., Gas transfer velocities of CO2 and CH4 in a tropical reservoirs and its river downstream, Journal of Marine Systems 2007, 66, 161-172.
  • [30] Zimov S.A., Voroaev Y.V., Semiletov I.P., Davidov S.P., Prosiannikov S.F., Chapin III F.S., Chapin M.C., Trumbore S., Tyler S., North Siberian Lakes: a methane source fueled by Pleistocene carbon, Science 1997, 227, 800-802.
  • [31] Xing Y., Xie P., Yang H., Ni L., Wang Y., Rong K., Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China, Atmos. Environ. 2005, 39, 5532-5540.
  • [32] Gruca-Rokosz R., Tomaszek J.A., Koszelnik P., Czerwieniec E., Methane and carbon dioxide emission from some reservoirs in SE Poland, Limnological Review 2010, 1, 15-21.
  • [33] Huttunen J.T., Lappalainen K.M., Saarijarvi E., Vaisanen T., Martikainen P.J., A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake, Science of Total Environment 2001, 266, 153-158.
  • [34] Tomaszek J.A., Czerwieniec E., Release of gases from bottom sediment of the Rzeszow Reservoir, Poland, Environment Protection Engineering 2004, 30(4), 189-196.
  • [35] dos Santos M.A., Rosa L.P., Sikar B., Sikar E., dos Santos E.O., Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants, Energy Policy 2006, 34, 481-488.
  • [36] Fearnside P.M., Greenhouse gas emissions from hydroelectric dams: Controversies provide a springboard fpr rethinking a supposedly ‘clean’ energy source - An editorial comment, Climatic Change 2004, 66, 1, 2.
  • [37] Kemenes A., Forsberg B.R., Melack J.M., Methane release below a tropical hydroelectric dam, Geophysical Research Letters, 34, L12809, 2007, doi:10.1029/2007GL029479.
  • [38] Guerin F., Abril G., Richard S., Burban B., Reynouard C., Seyler P., Delmas R., Methane and carbon dioxide emission from tropical reservoirs: Significance of downstream rivers, Geophysical Research Letters 2006, 33, L21407, doi:10.1029/2006GL027929.
  • [39] Kemenes A., Forsberg B.R., Melack J.M., CO2 emissions from tropical hydroelectric reservoir (Balbina, Brazil), J. Geophys. Res. 2011, 116, G03004, doi:10.1029/2010JG001465.
  • [40] Demarty M., Bastien J., Tremblay A., Hesslein R.H., Gill R., Greenhouse gas emissions from boreal reservoirs in Manitoba and Quebec, Canada, measured with automated systems, Environ. Sci. Technol. 2009, 43, 8908-8915.
  • [41] Whitfield C.J., Aherne J., Baulch H.M., Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland, Science of Total Environment 2011, 410-411, 217-225.
  • [42] Gruca-Rokosz R., Tomaszek J.A., Koszelnik P., Czerwieniec E., Methane and carbon dioxide fluxes at the sediment-water interface in reservoir, Polish J. Environ. Stud. 2011, 20, 1, 81-86.
  • [43] Berner R.A., Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton 1980.
  • [44] Sweerts J.-P.R.A., Oxygen consumption processes, mineralization and nitrogen cycling at the sediment - water interface of north temperate lakes. Ph.D. thesis, Rijksuniversitet, Groningen 1990.
  • [45] Lerman A., Geochemical Processes Water and Sediment Environment, John Wiley and Sons, New York 1979.
  • [46] Livingston G.P., Hutchinson G.L., Enclosure based measurement of trace gas exchange: applications and sources of error, [In:] P.A. Matson, R.C. Harris (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, Blackwell Science, Cambridge UK 1995, 14-51.
  • [47] Chanudet V., Descloux S., Harby A., Sundt H., Hansen B. H., Brakstad O., Serca D., Guerin F., Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR, Science of Total Environment 2011, 409, 5382-5391.
  • [48] St. Louis V.L., Kelly C.A., Duchemin E., Rudd J.W.M., Rosenberg D.M., Reservoir surfaces as sources of greenhouse gases to thatmosphere: a global estimate, BioScience 2000, 50, 9, 766- -775.
  • [49] Gruca-Rokosz R., Tomaszek J.A., Czerwieniec E., Methane emission from Nielisz Reservoir, Environment Protection Engineering 2011, 37, 3, 107-116.
  • [50] Benner R., Maccubin A.E., Hodson R.E., Anaerobic biodegradation of lignin polysaccharide components of lignocellulose and synthetic lignin by sediment microflora, Appl. Environ. Microbiol. 1984, 47, 998-1004.
  • [51] Teodoru C., Prairie Y., del Giorgio P., Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in Nothern Quebec, Canada, Ecosystems 2010, 14, 28-46.
  • [52] Tremblay A., Varfalvy L., Roehm Ch., Garneau M., The issue of greenhouse gases from hydroelectric reservoirs: from boreal to tropical regions, http://www.un.org/esa/sustdev/sdissues/energy/ op/hydro_tremblaypaper.pdf (data dostępu 15.09.2010), 2004.
  • [53] Huttunen J.T., Alm J., Liikanen A., Juutinen S., Larmola T., Hammar T., Silvola J., Martikainen P.J., Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emission, Chemosphere 2003, 52, 609-621.
  • [54] Delsontro T., Mcginnis D.F., Sobek S., Ostrovsky I., Wehrli B., Extreme methane emission from Swiss hydropower reservoir: contribution from bubbling sediments, Environ. Sci. Technol. 2010, 44, 2419-2425.
  • [55] Trojanowska A., Kurasiewicz M., Potencjał metalogeniczny osadow wybranych zbiornikow zaporowych w Polsce (Methanogenic potential of sediments in selected Polish dam reservoirs), [in:] W. Marszelewski (ed.), Anthropogenic and Natural Transformations of Lakes, 3, PTLim, Toruń 2009, 229-234.
  • [56] Soumis N., Duchemin E., Canuel R., Lucotte M., Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochemical Cycles 2004, 18, GB3022, doi:10.1029/ 2003GB002197.
  • [57] Galy-Lacacaux C., Delmas R., Jambert C., Dumestre J-F., Labroue L., Richard S., Gosse P., Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochem. Cycle 1997, 11, 471-483.
  • [58] Duchemin E., Lucotte M., St. Louis V.L., Canuel R., Hydroelectric reservoirs as an anthropogenic source of greenhouse gases, World Resource Review 2002, 14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0001-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.