PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A technical discussion of the emission of ammonia from SI vehicles fitted with three-way catalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza emisji amoniaku z samochodów z silnikami o zapłonie iskrowym wyposażonych w trójfunkcyjny reaktor katalityczny
Języki publikacji
EN
Abstrakty
EN
Ammonia emissions from motor vehicles have risen significantly in recent decades, due to the rollout or three-way catalysts within the spark ignition vehicle fleet. Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Having reached its light-off temperature, a three-way catalyst can produce substantial quantities or ammonia through various reaction pathways. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions. The air-to-fuel ratio, cylinder temperature and rate or formation or carbon monoxide and nitrogen monoxide all correlate to varying degrees with ammonia production. Ammonia emissions could represent a serious threat to air quality, particularly in urban settings. Further investigation is imperative to minimise the risks posed by this as yet unregulated exhaust emission component.
PL
Emisja amoniaku z pojazdów samochodowych znacząco wzrosła w ciągu kilku ostatnich dekad, co spowodowane było wzrostem liczby samochodów z silnikami o zapłonie iskrowym, wyposażonych w trójfunkcyjne reaktory katalityczne. Emisja amoniaku z pojazdów nie jest obecnie objęta regulacjami prawnymi, pomimo iż amoniak jest szkodliwy dla organizmów żywych i gaz ten zaklasyfikowany jest jako toksyczny. Osiągając temperaturę pracy (light-off), trójfunkcyjny reaktor katalityczny może wytwarzać znaczne ilości amoniaku w wyniku różnych reakcji chemicznych. Emisja ta jest zauważalnie wyższa podczas stanu pracy silnika, gdy zapotrzebowanie na moc jest większe, przy sterowaniu silnika z pominięciem sygnału z sondy A. Stosunek powietrze-paliwo, temperatura w komorze spalania, szybkość formowania się tlenku węgla CO i tlenku azotu NO wpływają w znaczącym stopniu na powstawanie amoniaku. Emisja amoniaku może powodować istotne zagrożenie dla jakości powietrza, szczególnie w obszarach miejskich. Ciągłe badania są konieczne, by zminimalizować ryzyko spowodowane tą emisją, z uwagi na brak odpowiednich wymagań w przepisach dotyczących emisji związków szkodliwych spalin.
Czasopismo
Rocznik
Strony
63--71
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Whitehead J. et al.: Seasonal and Diurnal Variation in Atmospheric Ammonia in an Urban Environment Measured Using a Quantum Cascade Laser Absorption Spectrometer. Water Air Soil Pollution, 183:317-329, 2007.
  • [2] Harkins J., Nicksic S.: Ammonia in Auto Exhaust. Environmental Science and Technology, Vol. I, Number 9, 1967, 751-752.
  • [3] Durbin T. et al.: The Effect of Fuel Sulfur on NH3 and Other Emissions from 2000-2001 Model Year Vehicles - CRC Project No. E-60 submitted to CONCAWE, 2003. Available online: http://www.crcao.com
  • [4] Durbin T. et al.: The effect of fuel sulfur on NH3 and other emissions from 2000-2001 model year vehicles. Atmospheric Environment 38, 2004, 2699-2708.
  • [5] Erisman J., Schaap M.: The need for ammonia abatement with respect to secondary PM reductions in Europe. Environmental Pollution 129, 2004, 159-163.
  • [6] EU MEMO/07/571. Questions and Answers on the new directive on ambient air quality and cleaner air for Europe. 12.12.2007. Available online: http://www.europa.eu
  • [7] Heeb N. et al.: Trends of NO-, NO2-, and NH3-emissions from gasoline-fuelled Euro 3- to Euro 4-passenger cars. Atmospheric Environment 42, 2004, 2543-2554.
  • [8] Whitehead J. et al.: Hourly Concentrations of Ammonia During the Winter in Manchester, UK, Related to Traffic and Background Sources. American Meteorological Society Abstract. Available online: http://ams.confex.com
  • [91 Kim Y. et al.: Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms. Atmos. Chem. Phys., 2001, II, 583-598.
  • [10] Pavlovic R.T. et al.: Ammonia emissions, concentrations and implications for particulate matter formation in Houston, TX. Atmospheric Environment, Volume 40, Supplement 2, 2006, 538-551.
  • [11] Martin R.: Personal communication. 24 June 2010.
  • [12] Cape J. et al.: Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environmental Pollution. 2004, Vol. 32, 3, 469-478.
  • [13] Cape J. et al.: Evidence for changing the critical level for ammonia. Environmental Pollution, 2009, Vol. 157, Issue 3, 1033-1037.
  • [14] Directive 2001/81/EC of the European Parliament and of the Council 01'23 October 2001 on national emission ceilings for certain atmospheric pollutants. Official Journal of the European Communities, L 309/22, 27.11.2001.
  • [15] Heeb N. et al.: Correlation of hydrogen, ammonia and nitrogen monoxide (nitric oxide) emissions of gasoline-fueled Euro-3 passenger cars at transient driving. Atmospheric Environment 40, (2006), 3750-3763.
  • [16] Mejia-Centeno I. et al.: Effect of low-sulfur fuels upon NH, and N2O emission during operation of commercial three-way catalytic converters. Topics in Catalysis Vols., 2007, 42-43.
  • [17] Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution to abate Acidification, Eutrophication and Ground-Level Ozone. United Nations Economic Commission for Europe, 1999. Available online: http://www.unece.org
  • [18] European Commission: Science for Environment Policy News Service, Special Issue 4, 2008. Is better regulation of ammonia emissions required? Available online: http://www.europa.eu
  • [19] Heeb N. et al.: Three-way catalyst-induced formation of ammonia - velocity- and acceleration-dependent emission factors. Atmospheric Environment 40, 2006, 5986-5997.
  • [20] TNO report 06.0R.PT.023.2/NG (2006). Euro VI technologies and costs for Heavy Duty vehicles. Available online: http://europa.eu
  • [21] Torkkell K.: Proceedings of The First International Exhaust Emissions Symposium, Bielsko-Biała, Poland, May 2010. ISBN: 978-83-931383-0-2.
  • [22] Hill L.: Proceedings of The First International Exhaust Emissions Symposium, Bielsko-Biala, Poland, May 2010. ISBN: 978-83-931383-0-2.
  • [23] Matsumoto R. et al.: Comparison of Ammonium Deposition Flux at Roadside and at an Agricultural Area for Long-term Monitoring: Emission NH, from Vehicles. Water, Air, & Soil Pollution, 2006, 173, 355-371.
  • [24] Kean A. et al.: On- Road Measurement of Ammonia and Other Motor Vehicle Exhaust Emissions. Environmental Science & Technology, 2000, Vol. 34, No. 17.
  • [25] Miyamoto A. et al.: Automotive Exhaust Emissions Control Using the Three-way Catalyst System. Ind. Eng. Chem. Prod. Res. Dev., 1979, Vol. 18, No. 2.
  • [26] Sutton M. et al.: Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment 34, 2000, 855-869.
  • [27] Durbin T.D.: Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles. Atmospheric Environment, 2002, Vol. 36, 9, 1475-1482.
  • [28] Perrino C. et al.: Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmospheric Environment, 36/34, 2002, 5385-5394.
  • [29] Bell A., Yates A.: An Evaluation of the Speciated Exhaust Emissions Associated with South African Gasolines in an EU4 Vehicle, 2008, SAE technical paper: 2008-01-1769.
  • [30] Defoort M. et al.: The effect of air-fuel ratio control strategies on nitrogen compound formation in three-way catalysts. International Journal of Engine Research, Vol. 5, Number 1/2004, 115-122.
  • [31] Huai T. et al.: Investigation of the formation of NH3 Emissions as a Function of Vehicle Load and Operating Condition, 2003, Available online: http://www.epa.gov
  • [32] Cant N. et al.: Nitrous oxide formation during the reaction of simulated exhaust streams over rhodium, platinum and palladium catalysts. Applied Catalysis B: Environmental, 1998, 17, 63-73.
  • [33] Jimenez-Palacios J.: Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. Ph.D. thesis, 1999, Available online: http://www.mit.edu
  • [34] Li H. et al.: Investigation of Regulated and Non-Regulated Cold Start Emissions using a Euro 3 SI Car as a Probe Vehicle under Real World Urban Driving Conditions, 2008, SAE Technical Paper: 2008-01-2428.
  • [35] Kozak M., Merkisz J.: The Mechanics of Fuel Sulphur Influence on Exhaust Emission from Diesel Engines. TEKA Kom. Mot. Energ. Roln., 2005, 5, 96-106.
  • [36] Huai T. et al.: Vehicle Specific Power Approach to Estimating On-Road NH3 Emissions from Light-Duty Vehicles. Environ. Sci. Technol. 2005, 39, 9595-9600.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0029-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.