PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of supersonic ejectors for hydrocarbon emissions capture

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Symposium on Compressor and Turbine Flow Systems - Theory and Application Areas "SYMKOM" (10 ; 26-28.10.2011 ; Łódź, Polska)
Języki publikacji
EN
Abstrakty
EN
Supersonic ejectors capturing low-pressure leakage gas from the compressors gas seal vents and re-injecting it into the fuel gas line of the gas generator allow not only saving the gas that otherwise would be leaking to the atmosphere but also eliminate hydrocarbon emissions. There are also operational and maintenance benefits, as the supersonic ejector itself does not have moving parts and is inherently maintenance free. A prototype design was developed and tested at a pipeline compressor station. A family of three ejectors was designed to cover a range of operating conditions associated with gas turbine driven compressors in pipeline applications. These ejectors were built, installed on the specially designed panel and tested at the Dresser-Rand facility. A comparison of predicted and as-tested operating maps is discussed and conclusions are made about operating range.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
  • [1] ASME PTC 24, 1976, Ejectors. Performance Test Codes, New York, New York: American Society of Mechanical Engineers.
  • [2] Biba Y., 2010, Evaluation of Operating Range and Performance of Supersonic Ejector Using Mean-line Approach, ASME Paper GT201 0-22768.
  • [3] Botros K.K., Geerligs J., and Imran H., 2007. Implementation of a Supersonic Ejector for Capturing Dry-Gas Seal Vent Gases. Industrial Application of Gas Turbines Committee, IAGT Paper No. 07-IAGT, 1.5.
  • [4] Botros K.K., Geerligs, J. and Imran H., 2008. Tandem Supersonic Ejectors, US Patent Application US20080105315A1 . - 10 pp.
  • [5] Dresser-Rand, 2009, Supersonic Ejectors, Publication No. 2228, Olean, New York: Dresser-Rand.
  • [6] Huang B.J., Chang J.M., Wang C.P., et al, 1999, A 1-0 Analysis of Ejector Performance, International Journal of Refrigeration, Vol. 22, p. 354-364.
  • [7] Keenan J.H., Neumann and Lustwerk F., 1950. An Investigation of Ejector design by Analysis and Experiment, ASME Journal of Applied Mechanics, Vol. 72, p. 299-309.
  • [8] Kim H.D., Lee J.H., Setoguchi T., et al, 2006. Computational Analysis of Variable Ejector Flow, Journal of Thermal Science, Vol. 15, No. 2, p. 140-144.
  • [9] Sriveerakul T., Aphornratana S., and Chunnanond K., 2007, Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results, International Journal of Thermal Sciences, Vol. 26, No. 8, p. 812-822.
  • [10] Starling K.E. and Savidge J.L., 1992, Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases. American Gas Association, Transmission Management Report Committee Report No. 8.
  • [11]Younker D., 2003, Value Engineering: Analysis and Methodology, New York, New York: CRC Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0028-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.