PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparison of the aluminium versus steel telecommunication towers in stochastic finite element method eigenvibrations analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is to make a comparison of the eigenfrequencies of the high telecommunication towers alternatively manufactured using the stainless steel and the aluminium components. It is provided each time assuming that the Young modulus of the applied materialź is the Gaussian input random variable and using the generalized stochastic perturbation method using the global version of the Response Function Method. Up to the fourth order probabilistic moments and characteristics are computed in the three dimensional Finite Element Method model of the tower composed from the continuous linear elastic edge beams spanned by the large number of the linear elastic bars. A computational part of the work is made using the hybrid usage of the computer algebra system MAPLE and the FEM engineering package ROBOT used widely in the civil engineering practice.
Rocznik
Strony
101--116
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
autor
autor
  • Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Technical University of Łódź, Al. Politechniki 6, 90-924 Łódź, Poland
Bibliografia
  • [1] Benaroya, H.: Random eigenvalues, algebraic methods and structural dynamic models, Applied Mathematics and Computation, 52(1), 37-66, 1992.
  • [2] Clough, R. and Penzien, J.: Dynamics of Structures, McGraw-Hill, 1975.
  • [3] Hughes, T.J.R.: The Finite Element Method - Linear Static and Dynamic Finite Element Analysis, Dover Publications, Inc., New York, 2000.
  • [4] Kaminski, M.: Generalized perturbation-based stochastic finite element method in elastostatics, Computers and Structures, 85(10), 586-594, 2007.
  • [5] Kaminski, M. and Szafran, J.: Random eigenvibrations of elastic structures by the response function method and the generalized stochastic perturbation technique, Archives of Civil and Mechanical Engineering, 10(1), 33-48, 2010.
  • [6] Kleiber, M.: Introduction to the Finite Element Method (in Polish), Polish Scientific Publishers, Warszawa-Poznan, 1986.
  • [7] Kleiber, M. and Hien, T.D.: The Stochastic Finite Element Method, Wiley, Chichester, 1992.
  • [8] Mehlhose, S., vom Scheidt, J. and Wunderlich, R.: Random eigenvalue problems for bending vibrations of beams, Zeitschrift für Angewandte Mathematik und Mechanik, 79(10), 693-702, 1999.
  • [9] Nair, P.B. and Keane, A.J.: An approximate solution scheme for the algebraic random eigenvalue problem, Journal of Sound and Vibrations, 260(1), 45-65, 2003.
  • [10] Pradlwater, H.J., Schueller, G.I. and Szekely, G.S.: Random eigenvalue problems for large systems. Computers and Structures, 80(27), 2415-2424, 2002.
  • [11] Soize, C.: Random matrix theory and non-parametric model of random uncertainties in vibration analysis, Journal of Sound and Vibrations, 263(4), 893-916, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0027-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.