PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of piezoelectric circular plates

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A general formulation that can be used for the stability analysis of axisymmetric circular plates with piezoelectric (PZT) is presented in the paper. Demonstrated approach is based on the Rayleigh-Ritz method that is applied for functional of electric energy enthalpy. Numerical examples deal wit h compressed circular plates. The computations are conducted both for Love-Kirchhoff and first order shear deformation plate theory (SDT). Destabilization effects of electric voltages and piezoelectric widths are studied.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
  • Institute of Machine Design, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] Mindlin, R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates, J. Appl. Physics, 23, 83-88, 1952.
  • [2] Mindlin, R.D.: High frequency vibrations of piezoelectric crystal plates, Int. J Solids Struct.8, 895-906, 1972.
  • [3] Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, J. Appl. Mech., 18, 31-38, 1951.
  • [4] Mindlin, R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Physics, 22, 315-323, 1951.
  • [5] Tiersten, H.F.: Linear piezoelectric plate vibration, Plenum, New York, 1969.
  • [6] Haojianga, D., Rongqiaoa, X., Yuweib, C. and Weiquia, C.: Free axisymmetric vibration of transversely isotropic piezoelectric circular plates, International Journal of Solids and Structures, 36, 4629-4652, 1999.
  • [7] Heyliger, P.R. and Ramirez, G.: Free vibration of laminated circular piezoelectric plates and discs, Journal of Sound and Vibration, 229(4), 935-956, 2000.
  • [8] Zhanga, X.Z., Veidtb, M. and Kitipornchaic, S.: Transient bending of a piezoelectric circular plate, International Journal of Mechanical Sciences, 46, 1845-1859, 2004.
  • [9] Ebrahimi, F. and Rastgo, A.: An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory, Thin - Walled Structures, 46, 1402-1408, 2008.
  • [10] Tzou H.S., Zhou, Y.H.: Dynamics and control of nonlinear circular plates with piezoelectric actuators, Journal of Sound and Vibration, 188, 189-207, 1995.
  • [11] Tzou, H.S. and Zhou, Y.H.: Nonlinear piezothermoelasticity and multi-field actuations. Part 2: Control of nonlinear deflection, buckling and dynamics, Journal of Vibration and Acoustics, Trans ASME, 119, 382-389, 1997.
  • [12] Kapuria, S. and Dumir, P.C.: Geometrically nonlinear axisymmetric response of thin circular plate under piezoelectric actuation, Communications in Nonlinear Science and Numerical Simulation, 10, 411-423, 2005.
  • [13] Liu, X., Wang, Q. and Quek, S.T.: Analytical solution for free vibration of piezoelectric coupled moderately thickness circular plates, Int. J. of Solids and Structures, 39, 2129-2151, 2002.
  • [14] Whitney, J.M. and Sun, C.T.: A higher order theory for extensional motion of laminated composites, Journal of Sound and Vibration, 30, 85-97, 1973.
  • [15] Lo, K.H., Christensen, R.M. and WU, E.M.: A high-order theory of plate deformation part 1: homogeneous plates, J. Appl. Mech., 44, 663-668, 1977.
  • [16] Reddy, J.N.: A. refined nonlinear theory of plates wit h transverse shear deformation, Int. J. Solids Struct., 20, 881-96, 1984.
  • [17] Hanna, N.F. and Leissa, A.W.: A higher order shear deformation theory for the vibration of thick plates, Journal of Sound and Vibration, 170, 545-555, 1994.
  • [18] Hosseini-Hashemi, Sh., Es'haghi, M. and Rokni Damavandi Taher, H.: An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory, Composite Structures, 92, 1333-1351, 2010.
  • [19] Chen, L.W. and Hwang, J.R.: Vibrations of initially stressed thick circular and annular plates based on a high-order plate theory, Journal of Sound and Vibration, 122, 79-95, 1988.
  • [20] Li u, C.F. and Lee. Y. T.: Finite element analysis of three dimensional vibrations of thick circular and annular plates, Journal of Sound and Vibration, 233, 63-80, 2000.
  • [21] Mindlin, R.D.: A variational principle for the equations of piezoelectromagnetism in a compound medium, in: Kompleksnii analiziego Prilozhenia, in Vekua 70th birthday volume, Moscow: Nauka, 397-400, 1978.
  • [22] Wang, Q., Quek, S.T. and Liu, X.: Analysis of piezoelectric coupled circular plate, Smart Mater. Struct., 10, 229-239, 2001.
  • [23] Halliday, D. and Resnick, R,: Fizyka, PWN, Warszawa, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0027-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.