PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Instability of Darcian flow in an alternating magnetic field

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper treats the stability of an interface between two different fluids moving through two different porous media. There is an alternating magnetic field parallel to the interface and to the flow direction, and there is a concentrated sheet of electric current at the interface which produces jump in the magnetic field strength. The evolution of the amplitude of propagation surface waves is governed by a complex Mathieu equation which have damping terms. In the limiting case of non-streaming fluids a simplified damped Mathieu equation has been imposed. At a critical value of the stratified magnetic field, the ordinary Mathieu equation without the damping terms is derived. The contribution of viscosity to the existence of free electric surface currents on the fluid interface is discussed. It is found that at the critical stratified magnetic field, the surface currents density has disappeared from the interface whence the stratified viscosity has a unite value. The stability criteria are discussed theoretically and numerically in which stability diagrams are obtained. Regions of stability and instability are identified for the wave number versus the coefficient of free surface currents. It is found that the increase of the fluid velocity plays a destabilizing influence in the stability criteria. Porous permeability and viscosity ratio play a stabilizing or a destabilizing role in certain cases. It is found that the viscosity ratio plays a dual role in the stability behaviour at the resonance case. The field frequency plays a stabilizing influence in the case of weak viscosity analysis and at a special value of the magnetic field ratio. The destabilizing influence for the field frequency is observed for the case of the Rayleigh- Taylor model and at the resonance case.
Rocznik
Strony
23--60
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
Bibliografia
  • [1] Chandrasekhar, S: Hydrodynamic and Hydromagnetic Stability, (1961), Oxford Univ. Press, Oxford.
  • [2] Fertman, VE: Magnetic Fluids Guidebook, (1990), Hemisphere, Washington.
  • [3] Zakaria, K: Physica A, (1999), 273, 248.
  • [4] Rosensweig, RE: Ferrohydrodynamics, (1985), Cambridge, Cambridge University Press.
  • [5] Zelazo, RE and Melcher, JR: J. Fluid Mech., (1969), 39, 1.
  • [6] Drazin, PG: J. Fluid Mech., (1970), 42, 321.
  • [7] Nayfeh, AH, and Saric, WS: J. Fluid Mech., (1972), 55, 311.
  • [8] Weissman, MA: Phil. Trans. R. Soc. A, (1979), 290, 639.
  • [9] Melcher, JR: Field Coupled Surface Waves, MIT Press, Cambridge, MA. Continuum electromechanics, (1981), MIT Press, Cambridge, MA.
  • [10] El-Dib, YO, J. Plasma Phys., (1996), 55, 219.
  • [11] El-Dib, Y and Matoog, RT: J. Colloid Interface Sci, 229, (2000), 29.
  • [12] El-Dib, YO: J. Physica Scripta, (2002), 66, 308.
  • [13] Dullien, FAL: Fluid Transport and Pore Structure, (1992), Academic Press, New York.
  • [14] Bear, J and Bachmat, Y: Introduction to modeling of transport phenomena in porous media, (1991), Kluwer Academic, Dordrecht.
  • [15] Baranblatt, GI, E'tov, VM and Ryzhik, VM: Theory of fluid through natural rocks, (1990), Kluwer Academic, Dordrecht.
  • [16] Sharma, RC and Spanos, TJT: Can. J. Phys., (1982), 60, 1391.
  • [17] Raghaven, R and Mardsen, SS: Q. J. Mech. Appl. Math., (1973) 26, 205.
  • [18] Bau, HH: Phys. Fluids, (1982), 25, 1719.
  • [19] Gheorghitza SU: Bull. Math. Soc. Sci. Math. R. S. Roum., (1967), 11, 25; J. Sci. Eng. Res., (1969), 13, 39.
  • [20] Georgescu, A and Gheorghitza, SU: Rev. Roum. Math. Pure Appl., (1971), 16, 27.
  • [21] El-Sayed, MF: Can. J. Phys., (1997), 75, 499.
  • [22] Mohamed, AA, El-Dib, YO and Mady, AA: Chaos, Solitons and Fractals, (2002), 14, 1027.
  • [23] El-Dib, YO and Ghaly, AY: J. of Colloid and Interface Science, (2004), 269, 224.
  • [24] El-Dib, YO and Ghaly, AY: Chaos Solitons and Fractals, (2003), 18, 55.
  • [25] El-Dib, YO: J. Magnetism and Magnetic Materials, (2003), 260, 1.
  • [26] El-Dib, YO: J. of Colloid and Interface Science, (2003), 259, 409.
  • [27] Nayfeh, AH and Mook, DT: Nonlinear Oscillations, (1979), John Wiley & Sons, Inc. Virginia.
  • [28] El-Dib, YO: J. Plasma Physics, (2001), 65, 1.
  • [29] El-Dib, YO and Moatimud, GM: Z. Naturforsch, (2002), 57a, 159.
  • [30] Mohamed, AA, Elshehawey, EF and El-Dib, YO: J. Colloid Interface Sci., (1998), 207, 54.
  • [31] El-Dib, YO: ZAMP, (1997), 48, 60.
  • [32] El-Dib, YO: J. Phys. A Math. Gen., (1997), 30, 3585.
  • [33] El-Dib, YO: Chaos, Solitons and Fractals, (2001), 12, 705.
  • [34] Nield, DA and Bejan, A: Convection in Porous Media, (1992), New York, Springer Verlag.
  • [35] Woodson, HH, and Melcher, JR: Electromechanical Dynamics, (1968), John Wiley & Sons.
  • [36] Batchelor, GK: An introduction to Fluid Dynamics, (Cambridge University Press, Cambridge, UK., (1967).
  • [37] Landau, LD and Lifshitz, EM: Electrohydrodynamics of Continuous Media, (1960), Pergamon Press. Oxford.
  • [38] Morse, PM and Feshbach, H: Methods of Theoretical Physics 1, (1953), McGraw-Hill, New York.
  • [39] Mclachlan, NW: Theory and Application of Mathieu Functions, (1964), Dover, New York.
  • [40] Grimshaw, R: Nonlinear Ordinary Differential Equations, (1990), Blackwell, Oxford.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0022-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.