PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The dynamic of a coupled three degree of freedom mechanical system

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a nonlinear coupled three degree-of-freedom autoparametric vibration system with elastic pendulum attached to the main mass is investigated numerically. Solutions for the system response are presented for specific values of the uncoupled normal frequency ratios and the energy transfer between modes of vibrations is observed. Curves of internal resonances for free vibrations and external resonances for vertical exciting force are shown. In this type system one mode of vibration may excite or damp another one, and except different kinds of periodic vibration there may also appear chaotic vibration. Various techniques, including chaos techniques such as bifurcation diagrams and: time histories, phase plane portraits, power spectral densities, Poincare maps and exponents of Lyapunov, are used in the identification of the responses. These bifurcation diagrams show many sudden qualitative changes, that is, many bifurcations in the chaotic attractor as well as in the periodic orbits. The results show that the system can exhibit various types of motion, from periodic to quasi-periodic and to chaotic, and is sensitive to small changes of the system parameters.
Słowa kluczowe
Rocznik
Strony
20--39
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Institute of Machine Design Fundamentals, Warsaw University of Technology, 02-524 Warsaw, 84 Narbutta Str., Poland, dsa@simr.pw.edu.pl
Bibliografia
  • [1] Hatwal, H: Mallik, AK and Ghos A: Non-linear vibrations of a harmonically excited autoparametric system, Journal of Sound and Vibration, (1982), 81, 153-164.
  • [2] Hatwal, H: Mallik, AK and Ghos, A, Forced nonlinear oscillations of an autoparametric system - Part 1: Periodic responses, Transactions of the ASME, Journal of Applied Mechanics, (1983), 50, 657-662.
  • [3] Sado, D: The energy transfer in nonlinearly coupled two-degree-of-freedom systems, Publishing House of the Warsaw University of Technology, Mechanika, (1997), 166, (in Polish).
  • [4] Sado, D: Nonlinear Vibrations of Inertial Coupling Mechanical Systems With Various Types of Friction, PD- Vol. 81, Engineering Systems Design and Analysis Conference, (1996), 9, ASME, 119-124.
  • [5] Minorsky, N: Nonlinear Oscillations, (1962), D. Van Nostrand Company, Inc., New York.
  • [6] Srinivasan, P, Sankar, TS: Autoparametric self-excitation of a pendulum type elastic oscillator, Journal of Sound and Vibration, (1974), 6, 549-557.
  • [7] Schmidt, BA: The Rotationally Flexible Pendulum Subjected to High Frequency Excitation, Transactions of the ASME, Journal of Applied Mechanics, (1990), 57, 725-730.
  • [8] Lynch, P: Resonant motion of the three-dimensional elastic pendulum, Int. J. Non-Linear Mechanics, (2002), 37, 345-367.
  • [9] Moon, FC: Chaotic Vibrations, (1987), John Wiley & Sons, Inc.
  • [10] Bajaj, AK, Johnson JM: Asymptotic Techniques and Complex Dynamics in Weakly Non-linear Forced Mechanical System, Int. J. Non-Linear Mechanics, (1990), 25, 2/3, 211-226.
  • [11] Bajaj, AK, Tousi, S, Torus Doubling and Chaotic Amplitude Modulations in Two Degree-of-Freedom Resonantly Forced Mechanical System, Int. J. Non-Linear Mechanics, (1990), 26, 6, 625-641.
  • [12] Szemplińska-Stupnicka, W: Cross- Well Chaos and Escape Phenomena in Driven Oscillators, Nonlinear Dynamics, (1992), 3, 225-243.
  • [1:3] Szemplińska-Stupnicka, W: The Analytical Predictive Criteria for Chaos and Escape in Nonlinear Oscillators: A Survey, Nonlinear Dynamics, (1995), 7, 129-147.
  • [14] Szemplińska-Stupnicka, W, Plaut RH, Hsieh JC: Period Doubling and Chaos in Unsymetric Structures Under Parametric Excitation, Transactions of the ASME, Journal of Applied Mechanics, (1989), 56, 947-952.
  • [15] Hatwal, H, Mallik, AK and Ghos A: Forced nonlinear oscillations of an autoparametric system - Part 2: Chaotic responses, Transactions of the ASME, Journal of Applied Mechanics, (1983), 50, 663-668.
  • [16] Bajaj, AK, Chang, SI and Johnson JM: Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System, Nonlinear Dynamics, (1994), 5, 433-457.
  • [17] Banerjee, B, Bajaj, AK, Davies P: Resonant dynamics of an autoparametric system: a study using higher - order averaging, Int. J. Non-Linear Mechanics, (1996), 31, 1, 21-39.
  • [18] Gonsalves, DH, Neilson, D, Barr, ADS: The dynamics of a nonlinear vibration absorber, Ninth World Congress IFToMM, Mediolan, Proceedings, (1995), 2, 1022-1026.
  • [19] Pust, L: Szöllös O., Forced irregular oscillations of the two degrees of freedom nonlinear system, EUROMECH-2nd European Nonlinear Oscillation Conference, Prague, Sept.9-13, (1996), 367-370.
  • [20] Mustafa, G, Ertas A, Dynamics and bifurcations of a coupled column-pendulum oscillator, Journal of Sound and Vibration, (1995), 182, 393-413.
  • [21] Tondl, A: Analysis of an autoparametric system, EUROMECH-2nd European Nonlinear Oscillation Conference, Prague, Sept. 9-13, (1996), 467-470.
  • [22] Verhulst, F: Autoparametric Resonance, Survey and New Results, EUROMECH-2nd European Nonlinear Oscillation Conference, Prague, Sept. 9-13, (1996), 483-488.
  • [23] Sado, D: Periodic and chaotic oscillations of the autoparametric beam-pendulum system, Proceedings of the Third Biennial World Conference on Integrated Design and Process Technology (ASME), Berlin, Germany, IDPT, (1998), 6, 06-213.
  • [24] Sado, D: Chaos in autoparametric coupled mechanical systems, Proceedings Tenth World Congress on the Theory of Machines and Mechanisms (IFToMM), Oulu, Finland, (1999), 4, 1638-1643.
  • [25] Sado, D: The chaotic phenomenons of a system with inertial coupling, Mechanics and Mechanical Engineering, Lodz, Poland, (2002), 6, 1, 31-43.
  • [26] Tondl, A, Nabergoj, R: The effect of parametric excitation on self-excited threemass system, Int. J. Non-Linear Mechanics, (2004), 39, 821-832.
  • [27] Sado, D, Gajos, K: Chaos in Three Degree of Freedom Dynamical System with Double Pendulum, in: J. Awrejcewicz, J. Grabski, J. Nowakowski (Eds), Sixth Conference on Dynamical Systems Theory and Applications, Łódź, Poland, December 10-12, (2001), 379-386.
  • [28] Sado, D, Gajos, K: Note on Chaos in Three Degree of Freedom Dynamical System with Double Pendulum, Meccanica, (2003), 38, 719-729.
  • [29] Baker, GL, Gollub, JP: Chaotic dynamics: an introduction, (1998), PWN, Warsaw, (in Polish).
  • [30] Kapitaniak, T: Chaotic Oscillator's-Theory and Applications. (1992), Singapore: World Scientific.
  • [31] Szemplińska-Stupnicka, W: Chaos, bifurkacje i fraktale wokół nas, Publishing House of the Warsaw University of Technology, (2002), Warsaw, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0022-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.