Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The fuzzy inference system with model based on association rules
Języki publikacji
Abstrakty
In the practice of company management we deal with many tasks, that are associated with limited knowledge and uncertainty about the course of events and activities managed objects. Fuzzy IF-THEN rules are an appropriate form of describing subjective uncertainty results from lack of knowledge and objective uncertainty results from characteristics of different processes. On the other hand, the uncertainty due to randomness can be described using the theory of probability. The paper presents inference system with probabilistic-fuzzy knowledge base as a tool which can help user to analyze complete uncertainty of real problems in the company using fuzzy sets and probability. In the mentioned system, knowledge is saved in the weighted IF-THEN fuzzy rules, where the weights constitute marginal probabilities of the fuzzy events in the antecedents and conditional probabilities of the fuzzy events in the consequents. Moreover, this paper propose using fuzzy association rules as a method of automatic knowledge base extraction in the inference system. For this purpose a modification of the Apriori algorithm was described. The algorithm extracts the most important and matching linguistic rules by assumption of minimum support as a minimum joint probability of the events in the rules. If minimum support equals zero, then the rules present total probabilistic distribution of the fuzzy events, otherwise the rules present probabilistic distribution, which is the best matching to a variables universe. In the methodology of system creation, the universe of quantitative variables is discretized on disjoint intervals of variable values and the fuzzy sets are defined by grades of membership of the disjoint intervals to fuzzy sets. This approach allows vectorize the calculation. A numerical example is analyzed by using a wind speed prediction process. Parameter of wind speed characterized by high variability of random character. However, the correct estimation of wind speed, as a energy resources, is necessary for control working of wind turbine. It is also important for the localization process of wind turbines, production planning and estimating cost-effectiveness of such investments.
Czasopismo
Rocznik
Tom
Strony
50--60
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
- Katedra Automatyki i Systemów Informatycznych, Instytut Automatyki i Informatyki, Wydział Elektrotechniki, Automatyki i Informatyki, Politechnika Opolska, ul. K. Sosnowskiego 31, 45-272 Opole, a.walaszek-babiszewska@po.opole.pl
Bibliografia
- [1] Agrawal R., Imielinski T., Swami A.: Mining association rules between sets of items in large databases. ACM Sigmod Intern. Conf. on Management of Data, Washington D.C., May 1993, pp. 207-216.
- [2] Alcalá-Fdez J., Alcalá R., Gacto M. J., Herrera F.: Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets and System, Vol. 160, 2009, pp. 905.921.
- [3] Błaszczyk K.: Implementation of a probabilistic-fuzzy modeling system in Matlab. X Międzynarodowe Warsztaty Doktoranckie, OWD, Warszawa 2008, str. 74-78.
- [4] Błaszczyk K.: Notes on Defining fuzzy sets in the created inference system with probabilistic-fuzzy knowledge base. IV Środowiskowe Warsztaty Doktorantów PO, Zeszyty Naukowe Politechniki Opolskiej Z. 63, Elektryka, Nr 335/2010, Opole . Pokrzywna 2010, str. 9-10.
- [5] Chen G., Wei Q.: Fuzzy Association Rules and the Extended Mining Algorithm. Information Sciences. Vol. 147, 2002, pp. 201-228.
- [6] Energetycznie aspekty wiatru. Baza danych odnawialnych źródeł energii województwa podkarpackiego. Dostępny w Internecie: htp:/www.baza-oze.pl
- [7] Fayyad U., Piatetsky-Shapiro G., Smyth P.: From data mining to knowledge discovery in databases. AI Magazine, 1996, pp. 37-54.
- [8] Frawley W., Piatetsky-Shapiro G., Matheus C.: Knowledge Discovery in Databases: An Overview. AI Magazine, 1992, pp. 57-70.
- [9] Herrera F.: Genetic fuzzy systems: status, critical considerations and future directions. International Journal of Computational Intelligence Research, Vol. 1, No. 1, 2005, pp. 59-67.
- [10] Hong T.P., Kuo C.S., Chi S.C.: Trade-off between Computation Time and Number of Rules for Fuzzy Mining from Quantitative Data. International Journal of Uncertainty, Fuzziness and Knowledge-Based System., Vol. 9, No. 5, 2001, pp. 587-604.
- [11] Hülermeier E.: Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets and System, Vol. 156, Issue 3, 2005, pp. 387-406.
- [12] Kacprzyk J.: Wieloetapowe sterowanie rozmyte. Wydawnictwo Naukowo-Techniczne, Warszawa 2001.
- [13] Koźmiński A. K.: Zarządzanie w warunkach niepewności. Wydawnictwo Naukowe PWN, Warszawa 2005.
- [14] Kuok C. M., Fu A., Wong M. H.: Mining Fuzzy Association Rules in Database. In ACM Sigmod VI Intern. Conf. on Information and Knowledge Management, Vol. 27 Issue I, 1998, pp. 41-46.
- [15] Łęski J.: Systemy neuronowo-rozmyte. WNT, Warszawa 2008.
- [16] Metody oceny zasobów energetycznych wiatru. Baza danych odnawialnych źródeł energii województwa podkarpackiego. Dostępny w Internecie: http://www.baza-oze.pl
- [17] Nowicki R. K.: Rozmyte systemy decyzyjne w zadaniach z ograniczoną wiedzą. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2009.
- [18] Piegat A.: Modelowanie i sterowanie rozmyte. EXIT, Warszawa 2003.
- [19] Piech H.: Wnioskowanie na bazie strategii rozmytych. Wydawnictwa Politechniki Częstochowskiej, Częstochowa 2005.
- [20] Rutkowska D., Piliński M., Rutkowski L.: Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. PWN, Warszawa-Łódź 1997.
- [21] Walaszek-Babiszewska A.: Zbiory rozmyte jako narzędzie formalizacji wiedzy ekspertów w systemach informatycznych. Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie. Materiały Krajowej Konferencji Naukowej Wiedza . Informacja . Marketing, Szczyrk 2004.
- [22] Walaszek-Babiszewska A., Chudzicki M.: Fuzzy model for the information and decision making support system for the CFM branch company. Applied Computer Science, Vol. 2, No. 1, 2006, Decision Support Engineering, Banaszak Z., Matuszek J. (Eds.), pp. 110-121.
- [23] Walaszek-Babiszewska A.: Fuzzy Knowledge Representation Using Probability Measures of Fuzzy Events, [in:] Automation and Robotics, Juan Manuel Ramos Arreguin (Ed.), pp. 329-342, I-Tech Education and Publishing, Vienna 2008.
- [24] Walaszek-Babiszewska A., Błaszczyk K.: A modified Apriori algorithm to generate rules for inference system with probabilistic-fuzzy knowledge base. 7th Workshop on Advanced Control and Diagnosis 19-20 November 2009, Zielona Góra, CD-ROOM.
- [25] Yager R. R., Filev D. P.: Podstawy modelowania i sterowania rozmytego. WNT, Warszawa 1995.
- [26] Zadeh L. A.: Fuzzy sets. Inform. Contr., 1965 vol. 8, pp. 338-353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0021-0007