PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deformation in a Generalized Thermoelastic Medium with Hydrostatic Initial Stress Subjected to Different Sources

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present problem we study the deformation of a rotating generalized thermoelastic medium with hydrostatic initial stress subjected to three different type of sources. The components of displacement, force stress and temperature distribution are obtained in Laplace and Fourier domain by applying integral transforms. The general solution obtained is applied to a specific problem of a half-space subjected to concentrated force, distributed force and a moving source. These components are then obtained in the physical domain by applying a numerical inversion method. Some particular cases are also discussed in context of the problem. The results are also presented graphically to show the effect of rotation and hydrostatic initial stress.
Rocznik
Strony
5--24
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
autor
  • Mathematics, M.M. Engineering. College, Maharishi Markandeswar University, Mullana, District Ambala, Haryana (India)
Bibliografia
  • [1] Ailawalia, P. and Narah, N.S.: Effect of rotation due to moving load at the interface of elastic half space and generalized thermoelastic half space, Int. E-Journal of Eng. Math: Theory and application, Vol. 5, 57-75, (2008).
  • [2] Barber, J.R and Martin-Moran, C.J.: Green's functions for transient thermoelastic contact problems for the half-plane. Wear. Vol. 79, 11-19, (1982).
  • [3] Barber, J.R..: Thermoelastic displacements and stresses due to a heat source moving over the surface of a half plane, ASME, Transactions, Journal of Applied Mechanics, Vol. 51, 636-640,(1984).
  • [4] Biot, M.A. Mechanics of international deformations, John Wiley and sons, Inc., New York, (1965).
  • [5] Chandrasekharaiah, D.S and Srinath, K.S.: Thermoelastic interactions without energy dissipation due to a point heat source, Journal of Elasticity, Vol. 50(2), 97-108, (1998).
  • [6] Chandrasekharaiah, D.S.: Hyperbolic thermoelastic: a review of recent literature, Appl. Mech. Rev., 51, 705-729, (1998).
  • [7] Chand, D, Sharma, J.N and Sud, S.P.: Transient generalized magneto-thermoelastic wawes in a rotating half space, Int. J. Engg. Sci., Vol.28, 547-556, (1990).
  • [8] Chattopadhyay, A., Bose, S. and Chakraborty, M.: Reflection of elastic waves under initial stress at a free surface, J. Acoust. Soc. Am. Vol. 72, 255-263, (1982).
  • [9] Clarke, N.S.and Burdness, J.S. Rayleigh waves on a rotating surface, ASME, J. of Appl. Mech., Vol.61, 724-726, (1994).
  • [10] Destrade, M.: Surface waves in rotating rhombic crystal, Proceeding of the Royal Society of London, Series A, 460, 653-665, (2004).
  • [11] Deswal, S. and Choudhary, S. Two-dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. Appl. Math. Mech., Vol. 29(2), 207-221, (2008).
  • [12] Dey, S., Roy, N., and Dutta, A.: Reflection and refraction of P-waves under initial stresses at an interface, Indian J. Pure Appl. Math. Vol. 16, 1051-1071, (1985).
  • [13] Dhaliwal, R.S; Majumdar, S.R and Wang, J.: Thermoelastic waves in an infinite solid caused by a line heat source, Int. J. Math. & Math. Sci.Wo). 20(2), 323-334, (1997).
  • [14] Green, A.E. And Laws, N.: On the entropy production inequality, Arch. Ration, Mech. Anal, 45, 45-47, (1972).
  • [15] Green, A.E, and Lindsay, K.A.: Thermoelasticity, J. of Elasticity, Vol. 2, 1-7, (1972).
  • [16] Lord, H.W. and Shulman, Y.: A generalized dynamical theory of thermoelasticity, J. Mech. Phy. solids, Vol. 15, 299-309, (1967).
  • [17] Montanaro, A.: On Singular surface in isotropic linear thermoelasticity with initial stress, J. Acoust. Soc. Am, Vol. 106, 1586-1588, (1999).
  • [18] Muller, I.M.: The coldness, universal function in thermoelastic bodies, Rational. Mech. Anl, Vol. 41, 319-332, (1971).
  • [19] Othman, M.I.A. and Song ,Y.: Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation, Int. J Solid and Structures , Vol. 44, 5651-5664, (2007).
  • [20] Othman, M.I.A. and Song ,Y.: Effect of rotation on plane waves of generalized electro-magneto-thernioviscoelasticity with two relaxation times, Appl. Math. Modelling, Vol. 32, 811-825, (2008).
  • [21] Roychoudhuri, S.K and Mukhopadhyay, S.: Effect of rotation and relaxation times on plane waves in generalized thermo-visco-elasticity. Int. J. Math. Math. Sci., Vol. 23(7), 497-505, (2000).
  • [22] Schoenberg, M. and Censor, D.: Elastic waves in rotating media, Quarterly of Appl. Math., Vol.31, 115-125, (1973).
  • [23] Sidhu, R.S. and Singh, S.J.: Comments on "Reflection of elastic waves under initial stress at a free surface", J. Acoust. Soc. Am. Vol. 74, 1640-1642, (1983).
  • [24] Singh, B., Kumar, A., and Singh, J.: Reflection of generalized thermoelastic waves from a solid half-space under hydrostatic initial stress, J. Appl. Math. Comp, Vol. 177, 170-177, (2006).
  • [25] Singh, B.: Effect of hydrostatic initial stresses on waves in a thermoelastic solid half-space, J. Appl. Math. Comp, Vol. 198, 494-505, (2008).
  • [26] Sharma J.N., Chauhan R.S. and Kumar R.: Time-harmonic sources in a generalized thermoelastic continuum, J. Thermal Stresses, Vol. 23(7), pp. 657-674,(2000).
  • [27] Sharma, J.N, Sharma, P.K and Gupta, S.K.: Steady state response to moving loads in thermoelastic solid media, J. Thermal Stresses, Vol. 27(9), 931-951, (2004).
  • [28] Sharma J.N and Chauhan, R.S.: Mechanical and thermal sources in a generalized thermoelastic half-space, J. Thermal Stresses, Vol. 24(7), pp. 651-675, (2001).
  • [29] Sharma, J.N. and Thakur, D.: Effect of rotation on Rayleigh-Lamb waves in magneto-thermoelastic media, J. of Sound and Vibration, Vol. 296, Issues 4-5, 871-887, (2006).
  • [30] Sharma, J.N. and Walia,V.: Effect of rotation on Rayleigh-Lamb waves in piezothermoelastic half space, Int. J. Solids Struct, Vol. 44, Issues 3-4, 1060-1072, (2007a).
  • [31] Sharma, J.N. and Othman, M.I.A.: Effect of rotation on generalized thermo-viscoelastic Rayleigh-Lamb waves, Int. J. Solids Struct., Vol. 44, Issues 13, 4243-4255, (2007).
  • [32] Sharma, J.N, Walia, V and Gupta, S.K.: Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space, Int. J. Mech. Sci., Vol. 50(3), 433-444, (2008).
  • [33] Sharma, J.N. and Kumar, V.: Plane strain problems of transversely isotropic thermoelastic media, J. Thermal Stresses, Vol. 20 ,463-476, (1997).
  • [34] Sherief, H.H.: Fundamental solution of the generalized thermoelastic problem for short times, J. Thermal Stresses, Vol. 9(2), 151-164, (1986).
  • [35] Suhubi, E.S.: Thermoelastic solids in continuum physics (edited by A.C.Eringin), Vol.11, Part II, chapter II, Acemadic Press, New York, (1975).
  • [36] Ting, T.C.T.: Surface waves in a rotating anisotropic elastic half-space, Wave Motion, Vol. 40, 329-346, (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0019-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.