Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of onset of convective instability in a dielectric micropolar viscoelastic fluid (Walters' liquid B') heated from below confined between two horizontal plates under the simultaneous action of the rotation of the system, vertical temperature gradient, one relaxation time and vertical electric field is considered. Linear stability theory is used to derive an eigenvalue of twelve order, and an exact eigenvalue equation for a neutral instability is obtained. Under somewhat artificial boundary conditions, this equation can be solved exactly to yield the eigenvalue relationship from which various critical values are determined in detail. Critical Rayleigh heat numbers and wave number for the onset of instability are presented graphically as a function of rotation at a certain value of the Prandtl number, for various values of the relaxation time, the Rayleigh electric number, the elastic parameter and micropolar parameters.
Czasopismo
Rocznik
Tom
Strony
171--184
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Faculty of Education, Department of Mathematics, Salalah-211, P.O. Box 2801, Sultanate of Oman, m_i_othman@yahoo.com
Bibliografia
- [1] Eringen, AC, Suhubi, ES: Nonlinear theory of simple micro-elastic solids, Int. J. Engng. Sci., (1964), 2, 189-203.
- [2] Eringen, AC: Theory of micropolar fluids, J. Math. Mech., (1966), 16, 1-18.
- [3] Jean, SK, Bhattacharyya, SP: The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below, Int. J. Engng. Sci., (1986), 24, 69.
- [4] Hsu, TH, Chen, CK: Natural convection of micropolar fluids in a rectangular enclosure, Int. J. Engng. Sci., (1996), 34, 407-415.
- [5] Peddiesou, J: Boundary-layer theory for a micropolar fluid, Int. J. Engng. Sci., (1972), 10, 23.
- [6] Ahmadi, G: Stability of micropolar fluid layer heated from below, Int. J. Engng. Sci., (1976), 14, 81-89.
- [7] Datta, A. B, Sastary, VUK: Thermal instability of a horizontal layer of micropolar fluid heated from below, Int. J. Engng. Sci., (1976), 14, 631-637.
- [8] Walzer, U: Ger. Bcit. Geo-physik, (1976), Leipzig, 85, 137.
- [9] Rama Rao, KV: Thermal instability in a micropolar fluid layer between rigid boundaries, Acta Mechanica, (1979), 32, 79.
- [10] Sharma, RC, Kumar, P: Effect of rotation on thermal convection in micropolar fluids, Int. J. Engng. Sci., (1994), 32, 545-551.
- [11] Walters, K: Second-order effects in elasticity, Plasticity and fluid dynamics, (1964), Pergamon, Oxford, 507.
- [12] Beard, DW, Walters, K: Elastico-viscous boundary-layer flows, I. Two- dimensional flow near a stagnation point, Proc. Camb. Phil. Soc., (1964), 60, 667-671.
- [13] Singh, A, Singh, J: Magnetohydrodynamic flow of a viscoelastic fluid past an accelerated plate, Nat. Acad. Sci. Lett., (1983), 6, 233-241.
- [14] Othman, MIA: Electrohydrodynamic instability of a rotating layer of a viscoelastic fluid heated from below, ZAMP, (2004), 55, 1-15.
- [15] Othman, MIA, Zaki, S. A: The effect of thermal relaxation time on a elactrohydrodynamic viscoelastic fluid layer heated from below, Can. J. Phys., (2003), 81, 779-787.
- [16] Chandrasekhar, S: Hydrodynamic and hydromagnetic stability, (1961), Oxford Univ. Press, London.
- [17] Othman, MIA: Electrohydrodynamic stability in a horizontal viscoelastic fluid layer in the presence of a vertical temperature gradient, Int. J. Engng. Sci., (2001), 39, 1217-1232.
- [18] Landau, L, Lifshitz, E: Electrohydrodynamics of continuous media, (1960), Pergamon Press, New York.
- [19] Bhattacharyya, SP, Abbas, M: On the stability of a hot rotating layer of micropolar fluid, Lett. Appl. Engng. Sci., (1985), 23, 371.
- [20] Turnbull, RJ: Effect of dielectrophoretic forces on the Benard instability, Phys. Fluids, (1969), 12, 1809.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD9-0012-0016